期刊论文详细信息
Biotechnology for Biofuels
Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum
Julie Ravachol1  Romain Borne1  Isabelle Meynial-Salles2  Philippe Soucaille2  Sandrine Pagès1  Chantal Tardif1  Henri-Pierre Fierobe1 
[1] Aix-Marseille Université-CNRS, LCB UMR7283, IMM, 31 chemin Joseph Aiguier, Marseille, 13402, France
[2] CNRS, UMR5504, Toulouse, 31400, France
关键词: Dockerin;    Free cellulase;    Cellulosome;    Cphy_3367;    Lachnoclostridium phytofermentans;    Ruminiclostridium cellulolyticum;   
Others  :  1228590
DOI  :  10.1186/s13068-015-0301-4
 received in 2015-06-16, accepted in 2015-07-30,  发布年份 2015
【 摘 要 】

Background

Ruminiclostridium cellulolyticum and Lachnoclostridium phytofermentans (formerly known as Clostridium cellulolyticum and Clostridium phytofermentans, respectively) are anaerobic bacteria that developed different strategies to depolymerize the cellulose and the related plant cell wall polysaccharides. Thus, R. cellulolyticum produces large extracellular multi-enzyme complexes termed cellulosomes, while L. phytofermentans secretes in the environment some cellulose-degrading enzymes as free enzymes. In the present study, the major cellulase from L. phytofermentans was introduced as a free enzyme or as a cellulosomal component in R. cellulolyticum to improve its cellulolytic capacities.

Results

The gene at locus Cphy_3367 encoding the major cellulase Cel9A from L. phytofermentans and an engineered gene coding for a modified enzyme harboring a R. cellulolyticum C-terminal dockerin were cloned in an expression vector. After electrotransformation of R. cellulolyticum, both forms of Cel9A were found to be secreted by the corresponding recombinant strains. On minimal medium containing microcrystalline cellulose as the sole source of carbon, the strain secreting the free Cel9A started to grow sooner and consumed cellulose faster than the strain producing the cellulosomal form of Cel9A, or the control strain carrying an empty expression vector. All strains reached the same final cell density but the strain producing the cellulosomal form of Cel9A was unable to completely consume the available cellulose even after an extended cultivation time, conversely to the two other strains. Analyses of their cellulosomes showed that the engineered form of Cel9A bearing a dockerin was successfully incorporated in the complexes, but its integration induced an important release of regular cellulosomal components such as the major cellulase Cel48F, which severely impaired the activity of the complexes on cellulose. In contrast, the cellulosomes synthesized by the control and the free Cel9A-secreting strains displayed similar composition and activity. Finally, the most cellulolytic strain secreting free Cel9A, was also characterized by an early production of lactate, acetate and ethanol as compared to the control strain.

Conclusions

Our study shows that the cellulolytic capacity of R. cellulolyticum can be augmented by supplementing the cellulosomes with a free cellulase originating from L. phytofermentans, whereas integration of the heterologous enzyme in the cellulosomes is rather unfavorable.

【 授权许可】

   
2015 Ravachol et al.

附件列表
Files Size Format View
Fig.9. 20KB Image download
Fig.8. 48KB Image download
Fig.7. 16KB Image download
Fig.6. 52KB Image download
Fig.5. 33KB Image download
Fig.4. 30KB Image download
Fig.3. 6KB Image download
Fig.2. 19KB Image download
Fig.1. 45KB Image download
Fig.9. 20KB Image download
Fig.8. 48KB Image download
Fig.7. 16KB Image download
Fig.6. 52KB Image download
Fig.5. 33KB Image download
Fig.4. 30KB Image download
Fig.3. 6KB Image download
Fig.2. 19KB Image download
Fig.1. 45KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.9.

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.9.

【 参考文献 】
  • [1]Desvaux M, Petitdemange H: Flux analysis of the metabolism of Clostridium cellulolyticum grown in cellulose-fed continuous culture on a chemically defined medium under ammonium-limited conditions. Appl Environ Microbiol 2001, 67:3846-3851.
  • [2]Giallo J, Gaudin C, Belaich JP: Metabolism and solubilization of cellulose by Clostridium cellulolyticum H10. Appl Environ Microbiol 1985, 49:1216-1221.
  • [3]Jin M, Gunawan C, Balan V, Dale BE: Consolidated bioprocessing (CBP) of AFEX-pretreated corn stover for ethanol production using Clostridium phytofermentans at a high solids loading. Biotechnol Bioeng 2012, 109:1929-1936.
  • [4]Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002, 66:506-577.
  • [5]Biswas R, Zheng T, Olson DG, Lynd LR, Guss AM: Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol Biofuels 2015, 8:20. BioMed Central Full Text
  • [6]Yutin N, Galperin MY: A genomic update on clostridial phylogeny: gram-negative spore formers and other misplaced clostridia. Environ Microbiol 2013, 15:2631-2641.
  • [7]Abdou L, Boileau C, de Philip P, Pages S, Fierobe HP, Tardif C: Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a catabolite-responsive element. J Bacteriol 2008, 190:1499-1506.
  • [8]Celik H, Blouzard JC, Voigt B, Becher D, Trotter V, Fierobe HP, et al.: A two-component system (XydS/R) controls the expression of genes encoding CBM6-containing proteins in response to straw in Clostridium cellulolyticum. PLoS One 2013, 8:e56063.
  • [9]Perret S, Belaich A, Fierobe HP, Belaich JP, Tardif C: Towards designer cellulosomes in Clostridia: mannanase enrichment of the cellulosomes produced by Clostridium cellulolyticum. J Bacteriol 2004, 186:6544-6552.
  • [10]Desvaux M, Guedon E, Petitdemange H: Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl Environ Microbiol 2000, 66:2461-2470.
  • [11]Fendri I, Tardif C, Fierobe HP, Lignon S, Valette O, Pages S, Perret S: The cellulosomes from Clostridium cellulolyticum: identification of new components and synergies between complexes. FEBS J 2009, 276:3076-3086.
  • [12]Gal L, Pages S, Gaudin C, Belaich A, Reverbel-Leroy C, Tardif C, et al.: Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Appl Environ Microbiol 1997, 63:903-909.
  • [13]Fierobe HP, Pages S, Belaich A, Champ S, Lexa D, Belaich JP: Cellulosome from Clostridium cellulolyticum: molecular study of the Dockerin/Cohesin interaction. Biochemistry 1999, 38:12822-12832.
  • [14]Pages S, Belaich A, Fierobe HP, Tardif C, Gaudin C, Belaich JP: Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXp. J Bacteriol 1999, 181:1801-1810.
  • [15]Borne R, Bayer EA, Pages S, Perret S, Fierobe HP: Unraveling enzyme discrimination during cellulosome assembly independent of cohesin-dockerin affinity. FEBS J 2013, 280:5764-5779.
  • [16]Bras JL, Alves VD, Carvalho AL, Najmudin S, Prates JA, Ferreira LM, et al.: Novel Clostridium thermocellum type I cohesin-dockerin complexes reveal a single binding mode. J Biol Chem 2012, 287:44394-44405.
  • [17]Currie MA, Adams JJ, Faucher F, Bayer EA, Jia Z, Smith SP: Scaffoldin conformation and dynamics revealed by a ternary complex from the Clostridium thermocellum cellulosome. J Biol Chem 2012, 287:26953-26961.
  • [18]Beguin P, Alzari PM: The cellulosome of Clostridium thermocellum. Biochem Soc Trans 1998, 26:178-185.
  • [19]Salama-Alber O, Jobby MK, Chitayat S, Smith SP, White BA, Shimon LJ, et al.: Atypical cohesin-dockerin complex responsible for cell surface attachment of cellulosomal components: binding fidelity, promiscuity, and structural buttresses. J Biol Chem 2013, 288:16827-16838.
  • [20]Rincon MT, Dassa B, Flint HJ, Travis AJ, Jindou S, Borovok I, et al.: Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1. PLoS One 2010, 5:e12476.
  • [21]Schoeler C, Malinowska KH, Bernardi RC, Milles LF, Jobst MA, Durner E, et al.: Ultrastable cellulosome-adhesion complex tightens under load. Nat Commun 2014, 5:5635.
  • [22]Blouzard JC, Coutinho PM, Fierobe HP, Henrissat B, Lignon S, Tardif C, et al.: Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics 2009, 10:541-554.
  • [23]Shima S, Igarashi Y, Kodama T: Purification and properties of two truncated endoglucanases produced in Escherichia coli harbouring Clostridium cellulolyticum endoglucanase gene celCCD. Appl Microbiol Biotechnol 1993, 38:750-754.
  • [24]Reverbel-Leroy C, Pages S, Belaich A, Belaich JP, Tardif C: The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J Bacteriol 1997, 179:46-52.
  • [25]Ravachol J, Borne R, Tardif C, de Philip P, Fierobe HP: Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum. J Biol Chem 2014, 289:7335-7348.
  • [26]Gaudin C, Belaich A, Champ S, Belaich JP: CelE, a multidomain cellulase from Clostridium cellulolyticum: a key enzyme in the cellulosome? J Bacteriol 2000, 182:1910-1915.
  • [27]Gal L, Gaudin C, Belaich A, Pages S, Tardif C, Belaich JP: CelG from Clostridium cellulolyticum: a multidomain endoglucanase acting efficiently on crystalline cellulose. J Bacteriol 1997, 179:6595-6601.
  • [28]Fierobe HP, Gaudin C, Belaich A, Loutfi M, Faure E, Bagnara C, et al.: Characterization of endoglucanase A from Clostridium cellulolyticum. J Bacteriol 1991, 173:7956-7962.
  • [29]Fierobe HP, Bagnara-Tardif C, Gaudin C, Guerlesquin F, Sauve P, Belaich A, et al.: Purification and characterization of endoglucanase C from Clostridium cellulolyticum. Catalytic comparison with endoglucanase A. Eur J Biochem 1993, 217:557-565.
  • [30]Belaich A, Parsiegla G, Gal L, Villard C, Haser R, Belaich JP: Cel9M, a new family 9 cellulase of the Clostridium cellulolyticum cellulosome. J Bacteriol 2002, 184:1378-1384.
  • [31]Blouzard JC, Bourgeois C, de Philip P, Valette O, Belaich A, Tardif C, et al.: Enzyme diversity of the cellulolytic system produced by Clostridium cellulolyticum explored by two-dimensional analysis: identification of seven genes encoding new dockerin-containing proteins. J Bacteriol 2007, 189:2300-2309.
  • [32]Tolonen AC, Petit E, Blanchard JL, Warnick TA, Leschine SB (2014) Technologies to study plant biomass fermentation using the model bacterium Clostridium phytofermentans. In: Sun J, Ding SY, Doran-Peterson J (eds) Biological conversion of biomass for fuels and chemicals: explorations from natural utilization systems. The Royal Society of Chemistry Energy and Environment series No. 10, pp 114–139
  • [33]Tolonen AC, Chilaka AC, Church GM: Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367. Mol Microbiol 2009, 74:1300-1313.
  • [34]Boutard M, Cerisy T, Nogue PY, Alberti A, Weissenbach J, Salanoubat M, et al.: Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass. PLoS Genet 2014, 10:e1004773.
  • [35]Zhang XZ, Sathitsuksanoh N, Zhang YH: Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans: heterologous expression, characterization, and synergy with family 48 cellobiohydrolase. Bioresour Technol 2010, 101:5534-5538.
  • [36]Guedon E, Desvaux M, Petitdemange H: Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol 2002, 68:53-58.
  • [37]Li Y, Tschaplinski TJ, Engle NL, Hamilton CY, Rodriguez M Jr, Liao JC, et al.: Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol Biofuels 2012, 5:2. BioMed Central Full Text
  • [38]Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, et al.: Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J Biol Chem 2002, 277:49621-49630.
  • [39]Fierobe HP, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, et al.: Design and production of active cellulosome chimeras. Selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem 2001, 276:21257-21261.
  • [40]Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265-275.
  • [41]Mosbah A, Belaich A, Bornet O, Belaich JP, Henrissat B, Darbon H: Solution structure of the module X2 1 of unknown function of the cellulosomal scaffolding protein CipC of Clostridium cellulolyticum. J Mol Biol 2000, 304:201-217.
  • [42]Shoseyov O, Doi RH: Essential 170-kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase. Proc Natl Acad Sci USA 1990, 87:2192-2195.
  • [43]Kakiuchi M, Isui A, Suzuki K, Fujino T, Fujino E, Kimura T, et al.: Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome. J Bacteriol 1998, 180:4303-4308.
  • [44]Kosugi A, Amano Y, Murashima K, Doi RH: Hydrophilic domains of scaffolding protein CbpA promote glycosyl hydrolase activity and localization of cellulosomes to the cell surface of Clostridium cellulovorans. J Bacteriol 2004, 186:6351-6359.
  • [45]Chanal A, Mingardon F, Bauzan M, Tardif C, Fierobe HP: Scaffoldin modules serving as “cargo” domains to promote the secretion of heterologous cellulosomal cellulases by Clostridium acetobutylicum. Appl Environ Microbiol 2011, 77:6277-6280.
  • [46]Fierobe HP, Mingardon F, Mechaly A, Belaich A, Rincon MT, Pages S, et al.: Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J Biol Chem 2005, 280:16325-16334.
  • [47]Maamar H, Abdou L, Boileau C, Valette O, Tardif C: Transcriptional analysis of the cip-cel gene cluster from Clostridium cellulolyticum. J Bacteriol 2006, 188:2614-2624.
  • [48]Tummala SB, Welker NE, Papoutsakis ET: Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 1999, 65:3793-3799.
  • [49]Perret S, Casalot L, Fierobe HP, Tardif C, Sabathe F, Belaich JP, et al.: Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824. J Bacteriol 2004, 186:253-257.
  • [50]Tardif C, Maamar H, Balfin M, Belaich JP: Electrotransformation studies in Clostridium cellulolyticum. J Ind Microbiol Biotechnol 2001, 27:271-274.
  • [51]Park JT, Johnson MJ: A submicrodetermination of glucose. J Biol Chem 1949, 181:149-151.
  • [52]Dusseaux S, Croux C, Soucaille P, Meynial-Salles I: Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metab Eng 2013, 18:1-8.
  文献评价指标  
  下载次数:89次 浏览次数:14次