Chemistry Central Journal | |
TiO2-graphene oxide nanocomposite as advanced photocatalytic materials | |
Václav Štengl1  Snejana Bakardjieva1  Tomáš Matys Grygar1  Jana Bludská1  Martin Kormunda2  | |
[1] Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 250 68, Řež, Czech Republic | |
[2] Department of Physics, Faculty of Science, J.E.Purkyně University in Ústí nad Labem, 400 96, Ustí n. L, Czech Republic | |
关键词: Photocatalysis; Graphene oxide; Titanium(IV) oxide; Graphene; | |
Others : 787951 DOI : 10.1186/1752-153X-7-41 |
|
received in 2012-12-10, accepted in 2013-02-13, 发布年份 2013 | |
![]() |
【 摘 要 】
Background
Graphene oxide composites with photocatalysts may exhibit better properties than pure photocatalysts via improvement of their textural and electronic properties.
Results
TiO2-Graphene Oxide (TiO2 - GO) nanocomposite was prepared by thermal hydrolysis of suspension with graphene oxide (GO) nanosheets and titania peroxo-complex. The characterization of graphene oxide nanosheets was provided by using an atomic force microscope and Raman spectroscopy. The prepared nanocomposites samples were characterized by Brunauer–Emmett–Teller surface area and Barrett–Joiner–Halenda porosity, X-ray Diffraction, Infrared Spectroscopy, Raman Spectroscopy and Transmission Electron Microscopy. UV/VIS diffuse reflectance spectroscopy was employed to estimate band-gap energies. From the TiO2 - GO samples, a 300 μm thin layer on a piece of glass 10×15 cm was created. The photocatalytic activity of the prepared layers was assessed from the kinetics of the photocatalytic degradation of butane in the gas phase.
Conclusions
The best photocatalytic activity under UV was observed for sample denoted TiGO_100 (k = 0.03012 h-1), while sample labeled TiGO_075 (k = 0.00774 h-1) demonstrated the best activity under visible light.
【 授权许可】
2013 Štengl et al; licensee Chemistry Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140702223109166.pdf | 2501KB | ![]() |
|
Figure 8. | 87KB | Image | ![]() |
Figure 7. | 97KB | Image | ![]() |
Figure 6. | 165KB | Image | ![]() |
Figure 5. | 104KB | Image | ![]() |
Figure 4. | 91KB | Image | ![]() |
Figure 3. | 82KB | Image | ![]() |
Figure 2. | 149KB | Image | ![]() |
Figure 1. | 103KB | Image | ![]() |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
【 参考文献 】
- [1]Krishnamoorthy K, Mohan R, Kim SJ: Graphene oxide as a photocatalytic material. Appl Phys Lett 2011., 98(24)
- [2]Lambert TN, Chavez CA, Hernandez-Sanchez B, Lu P, Bell NS, Ambrosini A, Friedman T, Boyle TJ, Wheeler DR, Huber DL: Synthesis and characterization of titania-graphene nanocomposites. J Phys Chem C 2009, 113(46):19812-19823.
- [3]Chen C, Cai W, Long M, Zhou B, Wu Y, Wu D, Feng Y: Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 2010, 4(11):6425-6432.
- [4]Zhang Q, He Y, Chen X, Hu D, Li L, Yin T, Ji L: Structure and photocatalytic properties of TiO2-graphene oxide intercalated composite. Chinese Sci Bull 2011, 56(3):331-339.
- [5]Min S, Lu G: Dye-sensitized reduced graphene oxide photocatalysts for highly efficient visible-light-driven water reduction. J Phys Chem C 2011, 115(28):13938-13945.
- [6]Liang YT, Vijayan BK, Gray KA, Hersam MC: Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett 2011, 11(7):2865-2870.
- [7]Jiang G, Lin Z, Chen C, Zhu L, Chang Q, Wang N, Wei W, Tang H: TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 2011, 49(8):2693-2701.
- [8]Stengl V, Popelkova D, Vlacil P: TiO2-graphene nanocomposite as high performace photocatalysts. J Phys Chem C 2011, 115(51):25209-25218.
- [9]Stengl V: Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chem - Eur J 2012.
- [10]JCPDS: PDF 2 database, Release 50. Newtown Square: International Centre for Diffraction Data; 2000.
- [11]ICSD: ICSD Database. Germany: FIZ Karlsruhe; 2008.
- [12]Brunauer S, Emmett PH, Teller E: Adsorption of gases in multimolecular layers. J Am Chem Soc 1938, 60:309-319.
- [13]Barrett EP, Joyner LG, Halenda PP: The determination of pore volume and area distributions in porous substances.1. Computations from nitrogen isotherms. J Am Chem Soc 1951, 73(1):373-380.
- [14]Orel ZC, Gunde MK, Orel B: Application of the Kubelka-Munk theory for the determination of the optical properties of solar absorbing paints. Prog Org Coat 1997, 30(1–2):59-66.
- [15]Stengl V, Houskova V, Bakardjieva S, Murafa N, Havlin V: Optically transparent titanium dioxide particles incorporated in poly(hydroxyethyl methacrylate) thin layers. J Phys Chem C 2008, 112(50):19979-19985.
- [16]Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45(7):1558-1565.
- [17]Wang GX, Yang J, Park J, Gou XL, Wang B, Liu H, Yao J: Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 2008, 112(22):8192-8195.
- [18]Jung HG, Myung ST, Yoon CS, Son SB, Oh KH, Amine K, Scrosati B, Sun YK: Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ Sci 2011, 4(4):1345-1351.
- [19]Murafa N, Stengl V, Houskova V: Monodispersed spindle-like particles of titania. Microsc Microanal 2009, 15:1036-1037.
- [20]Lowell S, Shields JE: Powder Surface Area and Porosity. 1998.
- [21]de Boer JA: In Structure & Properties of Porous Materials. 1958.
- [22]Ookubo A, Kanezaki E, Ooi K: ESR, XRD, and DRS studies of paramagnetic Ti3+ ions in a colloidal solid of titanium-oxide prepared by the hydrolysis of TiCl3. Langmuir 1990, 6(1):206-209.
- [23]Seredych M, Bandosz TJ: Effects of surface features on adsorption of SO2 on graphite oxide/Zr(OH)4 composites. J Phys Chem C 2010, 114(34):14552-14560.
- [24]Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr, Ruoff RS: Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47(1):145-152.
- [25]Shao GS, Zhang XJ, Yuan ZY: Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2-xNx. Appl Catal Environ 2008, 82(3–4):208-218.
- [26]Lam E, Chong JH, Majid E, Liu Y, Hrapovic S, Leung ACW, Luong JHT: Carbocatalytic dehydration of xylose to furfural in water. Carbon 2012, 50(3):1033-1043.
- [27]Bentley FF, Smithson LD, Rozek AL: Infrared Spektra and Characteristic Frequencies 700–300 cm-1. New-York: Wiley-Interscience; 1968.
- [28]Zhang Y, Tang Z-R, Fu X, Xu Y-J: TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2‚àíCarbon composite materials? ACS Nano 2010, 4(12):7303-7314.
- [29]Christy AA, Kvalheim OM, Velapoldi RA: Quantitative-analysis in diffuse-reflectance spectrometry - a modified Kubelka-Munk equation. Vib Spectrosc 1995, 9(1):19-27.
- [30]Reddy KM, Manorama SV, Reddy AR: Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys 2003, 78(1):239-245.
- [31]Tauc J, Grigorov R, Vancu A: Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 1966, 15(2):627-637.
- [32]Serpone N, Lawless D, Khairutdinov R: Size effects on the photophysical properties of colloidal anatase TiO2 particles - size quantization or direct transitions in this indirect semiconductor. J Phys Chem 1995, 99(45):16646-16654.
- [33]Jeong HK, Jin MH, So KP, Lim SC, Lee YH: Tailoring the characteristics of graphite oxides by different oxidation times. J Phys D: Appl Phys 2009, 42(6):Article number 065418.
- [34]Zhang Y, Pan C: TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J Mater Sci 2011, 46(8):2622-2626.
- [35]Lorences MJ, Patience GS, Diez FV, Coca J: Transient n-butane partial oxidation kinetics over VPO. Appl Catal A-General 2004, 263(2):193-202.
- [36]Djeghri N, Formenti M, Juillet F, Teichner SJ: Photointeraction on surface of titanium-dioxide between oxygen and alkanes. Faraday Discuss 1974, 58:185-193.
- [37]Sasirekha N, Basha SJS, Shanthi K: Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Appl Catal Environ 2006, 62(1–2):169-180.