期刊论文详细信息
Biotechnology for Biofuels
The complete genome of Blastobotrys (Arxula) adeninivorans LS3 - a yeast of biotechnological interest
Cécile Neuvéglise1,10  Uwe Scholz1,11  Patrick Wincker1,16  Jean-Luc Souciet8  Bernard Dujon1,15  Sebastian Worch1,11  Eric Westhof9  Benoit Vacherie7  Anke Trautwein-Schult1,11  Agnès Thierry1,15  Marie-Laure Straub8  Nils Stein1,11  David J Sherman2,20  Joseph Schacherer8  Guilhem Savel2,20  Anasua Sarkar2,20  Christine Sacerdot6  Jan Riechen1,11  Guy-Franck Richard1,15  Guillaume Morel1,10  Martin Mascher1,11  Marina Marcet-Houben2,21  Marc Lemaire1,12  Véronique Leh-Louis8  Ingrid Lafontaine1,15  Paul Jung8  Claire Jubin1,16  Dagmara Jankowska1,11  Anja Hartmann1,11  Urs Hähnel1,11  Przemysław Piotr Gierski1,17  Martin Giersberg1,11  Cécile Fairhead1  Laurence Despons8  Serge Casaregola1,10  Rüdiger Bode1,18  Claudine Bleykasten8  Sebastian Beier1,11  Keith Baronian1,14  Philippe Baret1,19  Valérie Barbe7  André Goffeau4  Christian Marck2  Emmanuel Talla3  Jose A Cruz9  Toni Gabaldón2,21  Erik Böer1,11  Tiphaine Martin2,20  Pascal Durrens2,20  Małgorzata Czernicka5  Claude Gaillardin1,10  Gotthard Kunze1,13 
[1]Institut de Génétique et Microbiologie, Université Paris-Sud, UMR CNRS 8621, F- Orsay CEDEX 91405, France
[2]CEA, Saclay Biology and Technologies Institute (iBiTec-S), Gif-sur-Yvette F-91191, France
[3]Aix-Marseille Université, CNRS UMR 7283, Laboratoire de Chimie Bactérienne, F-13402 Marseille, Cedex 20, France
[4]Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 5/15, Louvain-la-Neuve 1349, Belgium
[5]Institute of Plant Biology and Biotechnology, University of Agriculture in Krakow, Al. 29 Listopada 54, Krakow 31-425, Poland
[6]Present address: École Normale Supérieure, Institut de Biologie de l’ENS (IBENS), 46 rue d’Ulm, Paris F-75005, France
[7]CEA, Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, Évry F-91000, France
[8]Université de Strasbourg, CNRS UMR7156, Strasbourg F-67000, France
[9]Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, F-67084 Strasbourg, France
[10]INRA French National Institute for Agricultural Research, Micalis UMR 1319, CBAI, Thiverval-Grignon F-78850, France
[11]Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben D-06466, Germany
[12]Université Lyon 1, CNRS UMR 5240, Villeurbanne F-69621, France
[13]Yeast Genetics, Leibniz Institute of Plant Research (IPK), Corrensstrasse 3, Gatersleben 06466, Germany
[14]School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
[15]Institut Pasteur, Université Pierre et Marie Curie UFR927, CNRS UMR 3525, F-75724 Paris-CEDEX 15, France
[16]Université d’Evry, Bd François Mitterand, Evry F-91025, France
[17]Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw 02-109, Poland
[18]Institute of Biochemistry, University of Greifswald, Felix-Hausdorffstraße 4, Greifswald D-17487, Germany
[19]Université Catholique de Louvain, Earth and Life Institute (ELI), Louvain-la-Neuve 1348, Belgium
[20]LaBRI (UMR 5800 CNRS) and project-team Magnome INRIA Bordeaux Sud-Ouest, Talence F-33405, France
[21]Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
关键词: Metabolism;    n-butanol;    Tannic acid;    Biotechnology;    Genome;    Yeast;   
Others  :  792547
DOI  :  10.1186/1754-6834-7-66
 received in 2013-11-13, accepted in 2014-03-19,  发布年份 2014
PDF
【 摘 要 】

Background

The industrially important yeast Blastobotrys (Arxula) adeninivorans is an asexual hemiascomycete phylogenetically very distant from Saccharomyces cerevisiae. Its unusual metabolic flexibility allows it to use a wide range of carbon and nitrogen sources, while being thermotolerant, xerotolerant and osmotolerant.

Results

The sequencing of strain LS3 revealed that the nuclear genome of A. adeninivorans is 11.8 Mb long and consists of four chromosomes with regional centromeres. Its closest sequenced relative is Yarrowia lipolytica, although mean conservation of orthologs is low. With 914 introns within 6116 genes, A. adeninivorans is one of the most intron-rich hemiascomycetes sequenced to date. Several large species-specific families appear to result from multiple rounds of segmental duplications of tandem gene arrays, a novel mechanism not yet described in yeasts. An analysis of the genome and its transcriptome revealed enzymes with biotechnological potential, such as two extracellular tannases (Atan1p and Atan2p) of the tannic-acid catabolic route, and a new pathway for the assimilation of n-butanol via butyric aldehyde and butyric acid.

Conclusions

The high-quality genome of this species that diverged early in Saccharomycotina will allow further fundamental studies on comparative genomics, evolution and phylogenetics. Protein components of different pathways for carbon and nitrogen source utilization were identified, which so far has remained unexplored in yeast, offering clues for further biotechnological developments. In the course of identifying alternative microorganisms for biotechnological interest, A. adeninivorans has already proved its strengthened competitiveness as a promising cell factory for many more applications.

【 授权许可】

   
2014 Kunze et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705032452348.pdf 2137KB PDF download
Figure 5. 219KB Image download
Figure 4. 137KB Image download
Figure 3. 106KB Image download
Figure 2. 164KB Image download
Figure 1. 128KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Böer E, Breuer FS, Weniger M, Denter S, Piontek M, Kunze G: Large-scale production of tannase using the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 2011, 92:105-114.
  • [2]Giersberg M, Degelmann A, Bode R, Piontek M, Kunze G: Production of a thermostable alcohol dehydrogenase from Rhodococcus ruber in three different yeast species using the Xplor(R)2 transformation/expression platform. J Ind Microbiol Biotechnol 2012, 39:1385-1396.
  • [3]Rauter M, Schwarz M, Becker K, Baronian K, Bode R, Kunze G, Vorbrodt H-M: Synthesis of benzyl β-d-galactopyranoside by transgalactosylation using a β-galactosidase produced by the over expression of the Kluyveromyces lactis LAC4 gene in Arxula adeninivorans. J Mol Catal B-Enzym 2013, 97:319-327.
  • [4]Jankowska DA, Trautwein-Schult A, Cordes A, Hoferichter P, Klein C, Bode R, Baronian K, Kunze G: Arxula adeninivorans xanthine oxidoreductase and its application in the production of food with low purine content. J Appl Microbiol 2013, 115:796-807.
  • [5]Hahn T, Tag K, Riedel K, Uhlig S, Baronian K, Gellissen G, Kunze G: A novel estrogen sensor based on recombinant Arxula adeninivorans cells. Biosens Bioelectron 2006, 21:2078-2085.
  • [6]Kaiser C, Uhlig S, Gerlach T, Korner M, Simon K, Kunath K, Florschutz K, Baronian K, Kunze G: Evaluation and validation of a novel Arxula adeninivorans estrogen screen (nAES) assay and its application in analysis of wastewater, seawater, brackish water and urine. Sci Total Environ 2010, 408:6017-6026.
  • [7]Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I: New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison. FEMS Yeast Res 2005, 5:1079-1096.
  • [8]Wartmann T, Kunze G: Expression of heterologous genes in Arxula adeninivorans budding cells and mycelia. In Non-conventional yeasts in genetics, biochemistry and biotechnology. Edited by Wolf K, Breunig K, Barth G. Berlin-Heidelberg: Springer; 2003:7-13.
  • [9]Haslett ND, Rawson FJ, Barriere F, Kunze G, Pasco N, Gooneratne R, Baronian KH: Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst. Biosens Bioelectron 2011. http://dx.doi.org/10.1016/j.bios.2011.02.011 webcite
  • [10]Middelhoven WJ, Hoogkamer-Te Niet MV, Kreger-Van Rij NJW: Trichosporon adeninovorans sp. nov., a yeast species utilizing adenine, xanthine, uric acid, putrescine and primary n-alkylamines as the sole source of carbon, nitrogen and energy. Antonie Van Leeuwenhoek 1984, 50:369-378.
  • [11]Gienow U, Kunze G, Schauer F, Bode R, Hofemeister J: The yeast genus Trichosporon spec. LS3;molecular characterization of genomic complexity. Zentralbl Mikrobiol 1990, 145:3-12.
  • [12]Van der Walt JP, Smith MT, Yamada Y: Arxula gen. nov. (Candidaceae), a new anamorphic, arthroconidial yeast genus. Antonie Van Leeuwenhoek 1990, 57:59-61.
  • [13]Middelhoven WJ, de Jong IM, de Winter M: Arxula adeninivorans, a yeast assimilating many nitrogenous and aromatic compounds. Antonie Van Leeuwenhoek 1991, 59:129-137.
  • [14]Kurtzman CP, Robnett CJ: Multigene phylogenetic analysis of the Trichomonascus, Wickerhamiella and Zygoascus yeast clades, and the proposal of Sugiyamaella gen. nov. and 14 new species combinations. FEMS Yeast Res 2007, 7:141-151.
  • [15]Kurtzman CP: Summary of species characteristics. In The Yeasts, a taxonomic study. Volume 2. Edited by Kurtzman CP, Fell JW, Boekhout T. London: Elsevier; 2011::224-227.
  • [16]Curtin CD, Borneman AR, Chambers PJ, Pretorius IS: De-novo assembly and analysis of the heterozygous triploid genome of the wine spoilage yeast Dekkera bruxellensis AWRI1499. PLoS One 2012, 7:e33840.
  • [17]Piskur J, Ling Z, Marcet-Houben M, Ishchuk OP, Aerts A, LaButti K, Copeland A, Lindquist E, Barry K, Compagno C, Bisson L, Grigoriev IV, Gabaldón T, Phister T: The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties. Int J Food Microbiol 2012, 157:202-209.
  • [18]Morales L, Noel B, Porcel B, Marcet-Houben M, Hullo MF, Sacerdot C, Tekaia F, Leh-Louis V, Despons L, Khanna V, Aury JM, Barbe V, Couloux A, Labadie K, Pelletier E, Souciet JL, Boekhout T, Gabaldon T, Wincker P, Dujon B: Complete DNA sequence of Kuraishia capsulata illustrates novel genomic features among budding yeasts (Saccharomycotina). Genome Biol Evol 2013, 5:2524-2539.
  • [19]Ravin NV, Eldarov MA, Kadnikov VV, Beletsky AV, Schneider J, Mardanova ES, Smekalova EM, Zvereva MI, Dontsova OA, Mardanov AV, Skryabin KG: Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genomics 2013, 14:837. BioMed Central Full Text
  • [20]Böer E, Steinborn G, Florschütz K, Körner M, Gellissen G, Kunze G: Arxula adeninivorans (Blastobotrys adeninivorans) – A Dimorphic Yeast of Great Biotechnological Potential. In Yeast Biotechnology: Diversity and Applications. Edited by Satyanarayana T, Kunze G. Dordrecht: Springer Science + Business Media B.V; 2009:615-634.
  • [21]Kunze G, Kunze I: Characterization of Arxula adeninivorans strains from different habitats. Antonie Van Leeuwenhoek 1994, 65:29-34.
  • [22]Gordon JL, Byrne KP, Wolfe KH: Mechanisms of chromosome number evolution in yeast. PLoS Genet 2011, 7:e1002190.
  • [23]Dujon B: Yeast evolutionary genomics. Nat Rev Genet 2010, 11:512-524.
  • [24]Rosel H, Kunze G: Identification of a group-I intron within the 25S rDNA from the yeast Arxula adeninivorans. Yeast 1996, 12:1201-1208.
  • [25]Marck C, Kachouri-Lafond R, Lafontaine I, Westhof E, Dujon B, Grosjean H: The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Res 2006, 34:1816-1835.
  • [26]Cruz JA, Westhof E: Identification and annotation of noncoding RNAs in Saccharomycotina. C R Biol 2011, 334:671-678.
  • [27]Kovalchuk A, Senam S, Mauersberger S, Barth G: Tyl6, a novel Ty3/gypsy-like retrotransposon in the genome of the dimorphic fungus Yarrowia lipolytica. Yeast 2005, 22:979-991.
  • [28]Chalker DL, Sandmeyer SB: Transfer RNA genes are genomic targets for de Novo transposition of the yeast retrotransposon Ty3. Genetics 1990, 126:837-850.
  • [29]Ishii K: Conservation and divergence of centromere specification in yeast. Curr Opin Microbiol 2009, 12:616-622.
  • [30]Souciet JL, Dujon B, Gaillardin C, Johnston M, Baret PV, Cliften P, Sherman DJ, Weissenbach J, Westhof E, Wincker P, Jubin C, Poulain J, Barbe V, Ségurens B, Artiguenave F, Anthouard V, Vacherie B, Val ME, Fulton RS, Minx P, Wilson R, Durrens P, Jean G, Marck C, Martin T, Nikolski M, Rolland T, Seret ML, Casarégola S, Despons L, et al.: Comparative genomics of protoploid Saccharomycetaceae. Genome Res 2009, 19:1696-1709.
  • [31]Neuvéglise C, Marck C, Gaillardin C: The intronome of budding yeasts. C R Biol 2011, 334:679-686.
  • [32]Böer E, Bode R, Mock HP, Piontek M, Kunze G: Atan1p-an extracellular tannase from the dimorphic yeast Arxula adeninivorans: molecular cloning of the ATAN1 gene and characterization of the recombinant enzyme. Yeast 2009, 26:323-337.
  • [33]Böer E, Mock HP, Bode R, Gellissen G, Kunze G: An extracellular lipase from the dimorphic yeast Arxula adeninivorans: molecular cloning of the ALIP1 gene and characterization of the purified recombinant enzyme. Yeast 2005, 22:523-535.
  • [34]Gabaldon T: Large-scale assignment of orthology: back to phylogenetics? Genome Biol 2008, 9:235. BioMed Central Full Text
  • [35]Huerta-Cepas J, Capella-Gutierrez S, Pryszcz LP, Denisov I, Kormes D, Marcet-Houben M, Gabaldon T: PhylomeDB v3.0: an expanding repository of genome-wide collections of trees, alignments and phylogeny-based orthology and paralogy predictions. Nucleic Acids Res 2011, 39:D556-D560.
  • [36]Marcet-Houben M, Gabaldon T: Acquisition of prokaryotic genes by fungal genomes. Trends Genet 2010, 26:5-8.
  • [37]Rolland T, Neuveglise C, Sacerdot C, Dujon B: Insertion of horizontally transferred genes within conserved syntenic regions of yeast genomes. PLoS One 2009, 4:e6515.
  • [38]Huerta-Cepas J, Gabaldon T: Assigning duplication events to relative temporal scales in genome-wide studies. Bioinformatics 2011, 27:38-45.
  • [39]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 2004, 5:113. BioMed Central Full Text
  • [40]Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, Agrafioti I, Arnaud MB, Bates S, Brown AJ, Brunke S, Costanzo MC, Fitzpatrick DA, de Groot PW, Harris D, Hoyer LL, Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J, et al.: Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 2009, 459:657-662.
  • [41]Middelhoven WJ: Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeastlike fungi. A literature review and an experimental approach. Antonie Van Leeuwenhoek 1993, 63:125-144.
  • [42]Middelhoven WJ, Coenen A, Kraakman B, Sollewijn Gelpke MD: Degradation of some phenols and hydroxybenzoates by the imperfect ascomycetous yeasts Candida parapsilosis and Arxula adeninivorans: evidence for an operative gentisate pathway. Antonie Van Leeuwenhoek 1992, 62:181-187.
  • [43]Werner AK, Witte CP: The biochemistry of nitrogen mobilization: purine ring catabolism. Trends Plant Sci 2011, 16:381-387.
  • [44]Jankowska DA, Faulwasser K, Trautwein-Schult A, Cordes A, Hoferichter P, Klein C, Bode R, Baronian K, Kunze G: Arxula adeninivorans recombinant adenine deaminase and its application in the production of food with low purine content. J Appl Microbiol 2013, 115:1134-1146.
  • [45]Perez MD, Gonzalez C, Avila J, Brito N, Siverio JM: The YNT1 gene encoding the nitrate transporter in the yeast Hansenula polymorpha is clustered with genes YNI1 and YNR1 encoding nitrite reductase and nitrate reductase, and its disruption causes inability to grow in nitrate. Biochem J 1997, 321:397-403.
  • [46]Böer E, Schroter A, Bode R, Piontek M, Kunze G: Characterization and expression analysis of a gene cluster for nitrate assimilation from the yeast Arxula adeninivorans. Yeast 2009, 26:83-93.
  • [47]Gournas C, Oestreicher N, Amillis S, Diallinas G, Scazzocchio C: Completing the purine utilisation pathway of Aspergillus nidulans. Fungal Genet Biol 2011, 48:840-848.
  • [48]Field J, Leyendeckers MJ, Sierra-Alvarez R, Lettinga G, Habets L: Continuous anaerobic treatment of autoxidized bark extracts in laboratory-scale columns. Biotechnol Bioeng 1991, 37:247-255.
  • [49]Aguilar CN, Rodriguez R, Gutierrez-Sanchez G, Augur C, Favela-Torres E, Prado-Barragan LA, Ramirez-Coronel A, Contreras-Esquivel JC: Microbial tannases: advances and perspectives. Appl Microbiol Biotechnol 2007, 76:47-59.
  • [50]Bhat TK, Singh B, Sharma OP: Microbial degradation of tannins–a current perspective. Biodegradation 1998, 9:343-357.
  • [51]Lekha PK, Lonsane BK: Production and application of tannin acyl hydrolase: state of the art. Adv Appl Microbiol 1997, 44:215-260.
  • [52]Sietmann R, Uebe R, Boer E, Bode R, Kunze G, Schauer F: Novel metabolic routes during the oxidation of hydroxylated aromatic acids by the yeast Arxula adeninivorans. J Appl Microbiol 2010, 108:789-799.
  • [53]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
  • [54]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
  • [55]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol 2004, 5:R12. BioMed Central Full Text
  • [56]Louis VL, Despons L, Friedrich A, Martin T, Durrens P, Casaregola S, Neuveglise C, Fairhead C, Marck C, Cruz JA, Straub ML, Kugler V, Sacerdot C, Uzunov Z, Thierry A, Weiss S, Bleykasten C, De Montigny J, Jacques N, Jung P, Lemaire M, Mallet S, Morel G, Richard GF, Sarkar A, Savel G, Schacherer J, Seret ML, Talla E, Samson G, et al.: Pichia sorbitophila, an interspecies yeast hybrid, reveals early steps of genome resolution after polyploidization. G3 (Bethesda) 2012, 2:299-311.
  • [57]Sherman DJ, Martin T, Nikolski M, Cayla C, Souciet JL, Durrens P: Genolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes. Nucleic Acids Res 2009, 37:D550-D554.
  • [58]Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: an information aesthetic for comparative genomics. Genome Res 2009, 19:1639-1645.
  • [59]Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004, 340:783-795.
  • [60]Li L, Stoeckert CJ Jr, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003, 13:2178-2189.
  • [61]Landan G, Graur D: Heads or tails: a simple reliability check for multiple sequence alignments. Mol Biol Evol 2007, 24:1380-1383.
  • [62]Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005, 33:511-518.
  • [63]Subramanian AR, Kaufmann M, Morgenstern B: DIALIGN-TX: greedy and progressive approaches for segment-based multiple sequence alignment. Algorithms Mol Biol 2008, 3:6. BioMed Central Full Text
  • [64]Wallace IM, O’Sullivan O, Higgins DG, Notredame C: M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res 2006, 34:1692-1699.
  • [65]Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25:1972-1973.
  • [66]Gascuel O: BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 1997, 14:685-695.
  • [67]Akaike H: Data analysis by statistical models. No To Hattatsu 1992, 24:127-133.
  • [68]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307-321.
  • [69]Huerta-Cepas J, Dopazo J, Gabaldon T: ETE: a python environment for tree exploration. BMC Bioinforma 2010, 11:24. BioMed Central Full Text
  • [70]Stamatakis A, Aberer AJ, Goll C, Smith SA, Berger SA, Izquierdo-Carrasco F: RAxML-light: a tool for computing TeraByte phylogenies. Bioinformatics 2012. doi:10.1093/bioinformatics/bts309
  • [71]Wehe A, Bansal MS, Burleigh JG, Eulenstein O: DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony. Bioinformatics 2008, 24:1540-1541.
  • [72]Smyth GK: Limma: linear models for microarray data. In Bioinformatics and computational biology solutions using R and Bioconductor. Edited by Gentleman R, Carey V, Dudoit SI, Irizarry R, Huber W. New York: Springer; 2005:397-420.
  • [73]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004. doi:10.2202/1544-6115.1027
  文献评价指标  
  下载次数:36次 浏览次数:40次