期刊论文详细信息
Biotechnology for Biofuels
Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production
Tomas Morosinotto1  Alessandro Alboresi1  Andrea Meneghesso1  Anna Segalla1  Alessandra Bellan2  Giorgio Perin1 
[1]Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, Padua, 35121, Italy
[2]Centro studi di economia e tecnica dell’energia Giorgio Levi Cases, Università di Padova, Padua, Italy
关键词: Algae;    Biodiesel;    Insertional mutagenesis;    EMS;    Mutants;    Nannochloropsis;    Photosynthesis;   
Others  :  1227715
DOI  :  10.1186/s13068-015-0337-5
 received in 2015-05-29, accepted in 2015-09-09,  发布年份 2015
【 摘 要 】

Background

The productivity of an algal culture depends on how efficiently it converts sunlight into biomass and lipids. Wild-type algae in their natural environment evolved to compete for light energy and maximize individual cell growth; however, in a photobioreactor, global productivity should be maximized. Improving light use efficiency is one of the primary aims of algae biotechnological research, and genetic engineering can play a major role in attaining this goal.

Results

In this work, we generated a collection of Nannochloropsis gaditana mutant strains and screened them for alterations in the photosynthetic apparatus. The selected mutant strains exhibited diverse phenotypes, some of which are potentially beneficial under the specific artificial conditions of a photobioreactor. Particular attention was given to strains showing reduced cellular pigment contents, and further characterization revealed that some of the selected strains exhibited improved photosynthetic activity; in at least one case, this trait corresponded to improved biomass productivity in lab-scale cultures.

Conclusions

This work demonstrates that genetic modification of N. gaditana has the potential to generate strains with improved biomass productivity when cultivated under the artificial conditions of a photobioreactor.

【 授权许可】

   
2015 Perin et al.

附件列表
Files Size Format View
Fig.7. 25KB Image download
Fig.6. 91KB Image download
Fig.5. 40KB Image download
Fig.4. 23KB Image download
Fig.3. 23KB Image download
Fig.2. 55KB Image download
Fig.1. 68KB Image download
Fig.7. 25KB Image download
Fig.6. 91KB Image download
Fig.5. 40KB Image download
Fig.4. 23KB Image download
Fig.3. 23KB Image download
Fig.2. 55KB Image download
Fig.1. 68KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

【 参考文献 】
  • [1]Malcata FX: Microalgae and biofuels: a promising partnership? Trends Biotechnol 2011, 29:542-549.
  • [2]Simionato D, Block MA, La Rocca N, Jouhet J, Maréchal E, Finazzi G, Morosinotto T: The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot Cell 2013, 12:665-676.
  • [3]Biondi N, Bassi N, Chini Zittelli G, De Faveri D, Giovannini A, Rodolfi L, Allevi C, Macrì C, Tredici MR: Nannochloropsis sp. F&M-M24: oil production, effect of mixing on productivity and growth in an industrial wastewater. Environ Prog Sustain Energy 2013, 32:846-853.
  • [4]Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 2009, 102:100-112.
  • [5]Kirk J. Light and photosynthesis in aquatic ecosystems. 1994.
  • [6]Simionato D, Basso S, Giacometti GM, Morosinotto T: Optimization of light use efficiency for biofuel production in algae. Biophys Chem 2013, 182:71-78.
  • [7]Moody JW, McGinty CM, Quinn JC: Global evaluation of biofuel potential from microalgae. Proc Natl Acad Sci USA 2014, 111:8691-8696.
  • [8]Sforza E, Cipriani R, Morosinotto T, Bertucco A, Giacometti GM: Excess CO 2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina. Bioresour Technol 2012, 104:523-529.
  • [9]Zou N, Richmond A: Light-path length and population density in photoacclimation of Nannochloropsis sp. (Eustigmatophyceae). J Appl Phycol 2000, 12:349-354.
  • [10]Carvalho AP, Silva SO, Baptista JM, Malcata FX: Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 2011, 89:1275-1288.
  • [11]Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK: An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 2009, 462:518-521.
  • [12]Erickson E, Wakao S, Niyogi KK: Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J 2015, 82:449-465.
  • [13]Derks A, Schaven K, Bruce D: Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochim Biophys Acta Bioenerg 2015, 1847:468-485.
  • [14]Tian W, Chen J, Deng L, Yao M, Yang H, Zheng Y, Cui R, Sha G: An irradiation density dependent energy relaxation in plant photosystem II antenna assembly. Biochim Biophys Acta 2015, 1847:286-293.
  • [15]Melis A, Neidhardt J, Benemann JR: Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 1998, 10:515-525.
  • [16]Melis A: Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 2009, 177:272-280.
  • [17]Cuaresma M, Janssen M, Vílchez C, Wijffels RH: Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnol Bioeng 2009, 104:352-359.
  • [18]Kirst H, Melis A: The chloroplast signal recognition particle (CpSRP) pathway as a tool to minimize chlorophyll antenna size and maximize photosynthetic productivity. Biotechnol Adv 2014, 32:66-72.
  • [19]Formighieri C, Franck F, Bassi R: Regulation of the pigment optical density of an algal cell: filling the gap between photosynthetic productivity in the laboratory and in mass culture. J Biotechnol 2012, 162:115-123.
  • [20]Wobbe L, Remacle C: Improving the sunlight-to-biomass conversion efficiency in microalgal biofactories. J Biotechnol 2015, 201:28-42.
  • [21]Melis A: Dynamics of photosynthetic membrane composition and function. BBA Bioenerg 1991, 1058:87-106.
  • [22]Mussgnug JH, Wobbe L, Elles I, Claus C, Hamilton M, Fink A, Kahmann U, Kapazoglou A, Mullineaux CW, Hippler M, Nickelsen J, Nixon PJ, Kruse O: NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell 2005, 17:3409-3421.
  • [23]Nakajima Y, Ueda R: The effect of reducing light-harvesting pigment on marine microalgal productivity. J Appl Phycol 2000, 12:285-290.
  • [24]Bonente G, Formighieri C, Mantelli M, Catalanotti C, Giuliano G, Morosinotto T, Bassi R: Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors. Photosynth Res 2011, 108:107-120.
  • [25]Cazzaniga S, Dall’Osto L, Szaub J, Scibilia L, Ballottari M, Purton S, Bassi R: Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor. Biotechnol Biofuels 2014, 7:157. BioMed Central Full Text
  • [26]Polle JEW, Benemann JR, Tanaka A, Melis A: Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source. Planta 2000, 211:335-344.
  • [27]Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B: Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 2007, 5:802-814.
  • [28]Wobbe L, Blifernez O, Schwarz C, Mussgnug JH, Nickelsen J, Kruse O: Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas. Proc Natl Acad Sci USA 2009, 106:13290-13295.
  • [29]Kirst H, García-Cerdán JG, Zurbriggen A, Melis A: Assembly of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii requires expression of the TLA2-CpFTSY gene. Plant Physiol 2012, 158:930-945.
  • [30]Elrad D: A major light-harvesting polypeptide of photosystem II functions in thermal dissipation. Plant Cell Online 2002, 14:1801-1816.
  • [31]Horton P, Ruban A: Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 2005, 56:365-373.
  • [32]De Mooij T, Janssen M, Cerezo-Chinarro O, Mussgnug JH, Kruse O, Ballottari M, Bassi R, Bujaldon S, Wollman FA, Wijffels RH: Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized. J Appl Phycol 2014, 27(3):1063-1077.
  • [33]Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann JR: Biomass productivities in wild type and pigment mutant of Cyclotella sp. (Diatom). Appl Biochem Biotechnol 2009, 157:507-526.
  • [34]Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK, Fleming GR, Niyogi KK, Bassi R: Analysis of LHcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol 2011, 9:e1000577.
  • [35]Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC: Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 2012, 3:686.
  • [36]Doan T, Obbard J: Enhanced intracellular lipid in Nannochloropsis sp. via random mutagenesis and flow cytometric cell sorting. Algal Res 2012, 1(1):17-21.
  • [37]Blaby IK, Blaby-Haas CE, Tourasse N, Hom EFY, Lopez D, Aksoy M, Grossman A, Umen J, Dutcher S, Porter M, King S, Witman GB, Stanke M, Harris EH, Goodstein D, Grimwood J, Schmutz J, Vallon O, Merchant SS, Prochnik S: The Chlamydomonas genome project: a decade on. Trends Plant Sci 2014, 19:672-680.
  • [38]Maxwell K, Johnson GN: Chlorophyll fluorescence—a practical guide. J Exp Bot 2000, 51(345):659-668.
  • [39]Simionato D, Sforza E, Corteggiani Carpinelli E, Bertucco A, Giacometti GM, Morosinotto T: Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresour Technol 2011, 102:6026-6032.
  • [40]Vieler A, Wu G, Tsai CHH, Bullard B, Cornish AJ, Harvey C, Reca IBB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Armenia-Ferguson A, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya Simpson JP, TerBush A, Warakanont J, Zäuner S, Farre EM, et al.: Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 2012, 8:e1003064.
  • [41]Basso S, Simionato D, Gerotto C, Segalla A, Giacometti GM, Morosinotto T: Characterization of the photosynthetic apparatus of the Eustigmatophycean Nannochloropsis gaditana: evidence of convergent evolution in the supramolecular organization of photosystem I. Biochim Biophys Acta 2014, 1837:306-314.
  • [42]Niyogi KK, Truong TB: Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol 2013, 16:307-314.
  • [43]Wellburn AR: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 1994, 144:307-313.
  文献评价指标  
  下载次数:49次 浏览次数:13次