期刊论文详细信息
Acta Veterinaria Scandinavica
Some aspects of purinergic signaling in the ventricular system of porcine brain
Joanna Czarnecka3  Katarzyna Roszek3  Artur Jabłoński1  Dariusz Jan Smoliński2  Michał Komoszyński3 
[1] Department of Swine Diseases, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland
[2] Cell Biology Department, Institute of General and Molecular Biology, Nicolaus Copernicus University, 7 Gagarina St, 87-100 Torun, Poland
[3] Biochemistry Department, Institute of General and Molecular Biology, Nicolaus Copernicus University, 7 Gagarina St, 87-100 Torun, Poland
关键词: brain ventricular system;    nucleotide receptor;    exo-nucleotidases;    ecto-nucleotidases;    extracellular nucleotides;   
Others  :  789513
DOI  :  10.1186/1751-0147-53-54
 received in 2011-03-18, accepted in 2011-10-13,  发布年份 2011
PDF
【 摘 要 】

Background

Numerous signaling pathways function in the brain ventricular system, including the most important - GABAergic, glutaminergic and dopaminergic signaling. Purinergic signalization system - comprising nucleotide receptors, nucleotidases, ATP and adenosine and their degradation products - are also present in the brain. However, the precise role of nucleotide signalling pathway in the ventricular system has been not elucidated so far. The aim of our research was the identification of all three elements of purinergic signaling pathway in the porcine brain ventricular system.

Results

Besides nucleotide receptors on the ependymocytes surface, we studied purines and pyrimidines in the CSF, including mechanisms of nucleotide signaling in the swine model (Sus scrofa domestica). The results indicate presence of G proteins coupled P2Y receptors on ependymocytes and also P2X receptors engaged in fast signal transmission. Additionally we found in CSF nucleotides and adenosine in the concentration sufficient to P receptors activation. These extracellular nucleotides are metabolised by adenylate kinase and nucleotidases from at least two families: NTPDases and NPPases. A low activity of these nucleotide metabolising enzymes maintains nucleotides concentration in ventricular system in micromolar range. ATP is degraded into adenosine and inosine.

Conclusions

Our results confirm the thesis about cross-talking between brain and ventricular system functioning in physiological as well as pathological conditions. The close interaction of brain and ventricular system may elicit changes in qualitative and quantitative composition of purines and pyrimidines in CSF. These changes can be dependent on the physiological state of brain, including pathological processes in CNS.

【 授权许可】

   
2011 Czarnecka et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140704183349399.pdf 871KB PDF download
Figure 4. 34KB Image download
Figure 3. 20KB Image download
Figure 2. 33KB Image download
Figure 1. 88KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Rodrigues-Nunez A, Camina F, Lojo S, Rodrigues-Segade S, Castro-Gago M: Concentration of nucleotides, nucleosides, purine bases and urate in cerebrospinal fluid of children with meningitis. Acta Peadiatr 1993, 82:849-52.
  • [2]Schmidt H, Siems WG, Grune T, Grauel EL: Concentration of purine compounds in the cerebrospinal fluid of infants suffering from sepsis, convulsion and hydrocephalus. J Perinat Med 1995, 23:167-174.
  • [3]Holst H, Sollevi A: Increased concentration of hypoxanthine in human central cerebrospinal fluid after subarachnoid haemorrhage. Acta Neurochir 1983, 77:52-59.
  • [4]Stover JF, Lowitzsch K, Kempski OS: Cerebrospinal fluid hypoxanthine, xanthine and uric acidlevels may reflect glutamate - mediated exitotoxicity in different neurological diseases. Neurosci Lett 1997, 238:25-28.
  • [5]Tang FR, Sim MK: Metabotropic glutamate receptor subtype alfa (mGluR1alfa) immunoreactivity in ependymal cells of rat caudal medulla oblongata and spinal cord. Neurosci Lett 1997, 225:177-180.
  • [6]Yanase H, Shimizu H, Yamada K, Iwanaga T: Cellular Localization of the Diazepam Binding Inhibitor in Glial Cells with Special Reference to Its Coexistence with Brain-type Fatty Acid Binding Protein. Arch Histol Cytol 2002, 65:27-36.
  • [7]Rating D, Siemes H, Löscher W: Low CSF GABA concentration in children with febrile convulsions, untreated epilepsy, and meningitis. J Neurol 1983, 230:217-25.
  • [8]Weiner M, Speciale S, Risser R, Kramer G, Petty F: Cerebrospinal fluid and plasma gamma-aminobutyric acid in Alzheimer's disease. Biol Psychiatry 1996, 40:933-934.
  • [9]Jiménez-Jiménez FJ, Molina JA, Gómez P, Vargas C, de Bustos F, Benito J, Tallón-Barranco A, Ortí-Pareja M, Gasalla T, Arenas J: Neurotransmitter amino acids in cerebrospinal fluid of patients with Alzheimer's disease. J Neural Transm 1998, 105:269-277.
  • [10]Tomé M, Moreira E, Pérez-Fígares JM, Jiménez AJ: Presence of D1- and D2-like dopamine receptors in the rat, mouse and bovine multiciliated ependyma. J Neural Transm 2007, 114:983-994.
  • [11]Rodríguez S, Vio K, Wagner C, Barría M, Navarrete EH, Ramírez VD, Pérez-Fígares JM, Rodríguez EM: Changes in the cerebrospinal-fluid monoamines in rats with an immunoneutralization of the subcommissural organ-Reissner's fiber complex by maternal delivery of antibodies. Exp Brain Res 1998, 128:278-290.
  • [12]Rodriguez-Nunez A: Neuron-specific enolase, nucleotides, nucleosides, purine bases, oxypurines and urid amid concentration in cerebrospinal fluid of children with meningitis. Brain Dev 2003, 25:102-106.
  • [13]Rodríguez-Núñez A, Camiña F, Lojo S, Rodríguez-Segade S, Castro-Gago M: Purine metabolites and pyrimidine bases in cerebrospinal fluid of children with simple febrile seizures. Dev Med Child Neurol 1991, 33:908-11.
  • [14]Castro-Gago M, Camiña F, Lojo S, Rodríguez-Segade S, Rodríguez-Núñez A: Concentrations of purine nucleotides and purine and pyrimidine bases in cerebrospinal fluid of neurologically healthy children. Eur J Clin Chem Clin Biochem 1992, 30:761-5.
  • [15]Stoeckel ME, Uhl-Bronner S, Hugel S, Veinante P, Klein MJ, Freund-Mercier MJ, Schlichter R: Cerebrospinal fluid cocntacting neurons in the rat spinal cord, a γ-aminobutiric acidergic system expressing the P2X2 subunit of purynergic receptors, PSA-NCAM, and GAP-43 immunoreactivities: light and electron microscopic study. J Comp Neurol 2003, 457:159-174.
  • [16]Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G: Tissue Distribution of the P2X7 Receptor. Neuropharm 1997, 36:1277-1283.
  • [17]Rathbone M, Middlemiss P, Gysbers J, Andrew C, Herman M, Reed J, Ciccarelli R, Iorio P, Caciagli F: Trophic effect of purines in neurons and glial cells. Prog Neurobiol 1999, 59:663-690.
  • [18]Ciccarelli R, Ballerini P, Sabatino G, Rathbone MP, D'Onofrio M, Caciagli F, Iorio P: Involement of astrocytes in purine mediated reparative processes in the brain. Int J Devl Neurosci 2001, 19:359-414.
  • [19]Ralevic V, Burnstock G: Receptors for purines and pyrimidines. Am J Pharmacol Exp Ther 1998, 50:413-492.
  • [20]Jacobson KA, Hoffmann C, Cattabeni F, Abbracchio MP: Adenosine-induced cell death: evidence for receptor-mediated signaling. Apoptosis 1999, 4:197-211.
  • [21]Schubert P, Ogata T, Marchini C, Ferroni S, Rudolphi K: Protective mechanisms of adenosine in neurons and glial cells. Ann N Y Acad Sci 1999, 825:1-10.
  • [22]Burnstock G: Development and perspectives of the purinoceptors concept. J Auton Pharmacol 1996, 16:295-302.
  • [23]Burnstock G, Knight GE: Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 2004, 240:301-304.
  • [24]Harden TK, Lazarowski ER, Boucher RC: Release, metabolism and interconversion of adenine and uridine nucleotides: Implications for G protein-coupled P2 receptor agonist selectivity. Trends Pharmacol Sci 1997, 18:43-46.
  • [25]Zimmermann H: Extracellular purine metabolism. Drug Dev Res 1996, 39:337-352.
  • [26]Zimmermann H: Signalling via ATP in the nervous system. Trends Neurosci 1994, 17:420-425.
  • [27]Burnstock G: Purinergic signalling: past, present and future. Braz J Med Biol Res 2009, 42:3-8.
  • [28]Koziak K: CD39 (NTPDase 1) - Characteristics of the enzyme and its role in regulating coagulation and inflammation processes. Post Biol Kom 2002, 29:15-25.
  • [29]Zimmermann H, Braun N, Heine P, Kohring K, Marxen M, Sévigny J, Robson SC: The molecular and functional properties of E-NTPDase1, E-NTPDase2 and ecto-5'-nucleotidase in nervous tissue. In Ecto-ATPases and related ectonucleotidases. Edited by VanDuffel L, Lemmens R. Maastricht: Shaker Publishing BV; 2000:9-20.
  • [30]Xiang Z, Burnstock G: Expression of P2X receptors in rat choroid plexus. Neuroreport 2005, 16:903-907.
  • [31]Oses J, Viola G, de Paula Cognato G, Júnior V, Hansel G, Böhmer A, Leke R, Bruno A, Bonan C, Bogo M, Portela L, Souza D, Sarkis J: Pentylenetetrazol kindling alters adenine and guanine nucleotide catabolism in rat hippocampal slices and cerebrospinal fluid. Epilepsy Res 2007, 75:104-111.
  • [32]Czarnecka J, Cieślak M, Komoszyński M: Application of solid phase extraction and high-performance liquid chromatography to qualitative and quantitative analysis of nucleotides and nucleosides in human cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci 2005, 822:85-90.
  • [33]Van Belle H: Alkaline phosphatase. Kinetics and inhibition by levamisole of purified isoenzymes from humans. Clin Chem 1976, 22:972-976.
  • [34]Wu PH, Phillis JW: Uptake of Adenosine by Isolated Rat Brain Capillaries. J Neurochem 1982, 38:687-690.
  • [35]Kukulski F, Komoszyński M: Purification and characterization of NTPDase1 (ecto-apyrase) and NTPDase2 (ecto-ATPase) from porcine brain cortex synaptosomes. Eur J Biochem 2004, 270:3447-3454.
  • [36]Cauwenberghs S, Feijge M, Hageman G, Hoylaerts M, Akkerman JW, Curvers J, Heemskerk J: Plasma ectonucleotidases prevent desensitization of purinergic receptors in stored platelets: importance for platelet activity during thrombus formation. Transfusion 2006, 46:1018-1028.
  • [37]Kurebayashi N, Kodama T, Ogawa Y: P1, P5-Di(Adenosine-5')Pentaphosphate(Ap5A) as an Inhibitor of Adenylate Kinase in Studies of Fragmented Sarcoplasmic Reticulum from Bullfrog Skeletal Muscle. J Biochem 1980, 88:871-876.
  • [38]Bradford MM: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 1976, 72:248-254.
  • [39]Sato K, Kubota T, Ishida M, Yoshida K, Takeuchi H, Handa Y: Immunohistochemical and ultrastructural study of chordoid glioma of the third ventricle: its tanycytic differentiation. Acta Neuropathol 2003, 106:176-180.
  • [40]Osesa JP, Cardosoa CM, Albuquerque GR, Barreto KI, Rucker B, Ribas FC, Wink MR, Bonan CD, Battastini AMO, Freitas Sarkis JJ: Soluble NTPDase: An additional system of nucleotide hydrolysis in rat blood serum. Life Sci 2004, 74:3275-3284.
  • [41]Sakagami H, Aoki J, Natori Y, Nishikawa K, Kakehi Y, Natori Y, Arai H: Biochemical and Molecular Characterization of a Novel Choline-specific Glycerophosphodiester Phosphodiesterase Belonging to the Nucleotide Pyrophosphatase/Phosphodiesterase (NPP) family. J Biol Chem 2005, 23:1-30.
  • [42]Zimmermann H: Extracellular metabolism of ATP and other nucleotides. Naunyn-Schmiedeberg's Arch Pharmacol 2000, 362:299-309.
  • [43]Novak I: ATP as a Signaling Molecule: the Exocrine Focus. News Physiol Sci 2003, 18:12-17.
  • [44]Finger TE, Danilova V, Barrows J: ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 2005, 310:1495-1499.
  • [45]Lazarowski ER, Boucher RC, Kendall HT: Mechanisms of Release of Nucleotides and Integration of Their Action as P2X- and P2Y-Receptor Activating Molecules. Mol Pharmacol 2003, 64:785-795.
  • [46]Godinga JW, Grobbenb B, Slegers H: Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta 2003, 1638:1-19.
  • [47]Bollen M, Gijsbers R, Ceulemans H, Stalmans W, Stefan C: Nucleotide pyrophosphatase/phosphodiesterase on the move. Crit Rev Biochem Mol Biol 2000, 35:393-432.
  • [48]Yano Y, Hayashi Y, Sano K, Shinmaru H, Kuroda Y, Yokozaki HI, Yoon S, Kasuga M: Expression and localization of ecto-nucleotide pyrophosphatase/phosphodiesterase I-3 (E-NPP3/CD203c/PD-Iβ/B10/gp130RB13-6) in human colon carcinoma. Int J Mol Med 2003, 12:763-766.
  • [49]Fausther M, Lecka J, Kukulski F, Lévesque SA, Pelletier J, Zimmermann H, Dranoff JA, Sévigny J: Cloning, purification and identification of the liver canalicular ecto-ATPase as NTPDase8. Am J Physiol Gastrointest Liver Physiol 2006, 9:785-795.
  • [50]Simon C, Robson SC, Sévigny J, Zimmermann H: The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2006, 2:409-430.
  • [51]Silva-Alvarez C, Carraro M, Balmaceda-Aguilera C, Pastor P, Angeles GM, Reinicke K, Aguayo L, Molina B, Cifuentes M, Medina R, Nualart F: Ependymal cell differentiation and GLUT1 expression is synchronous process in the ventricular wall. Neurochem Res 2005, 30:1227-1236.
  • [52]Oshio K, Binder D, Yang B, Schecter S, Verkman A, Manley G: Expression of aquaporin water channels in mouse spinal cord. Neuroscience 2004, 127:685-693.
  • [53]Steiniger B, van der Meide PH: Rat ependyma and microglia cells express class II MHC antigens after intravenous infusion of recombinant gamma interferon. J Neuroimmunol 1988, 19:111-118.
  • [54]Hauwel M, Furon E, Canova C, Griffiths M, Neal J, Philippe P: Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, "protective" glial stem cells and stromal ependymal cells. Brain Res Rev 2005, 48:220-233.
  • [55]Li Y, Chen J, Chopp M: Cell proliferation from ependymal, subependymal and choroid plexus cell in response to stoke in rats. J Neurol Sci 2002, 193:137-146.
  • [56]Verleysdonka S, Kistnera S, Pfeiffer-Guglielmia B, Wellarda J, Lupescub A, Laskec J, Langb F, Rappd M, Hamprechta B: Glycogen metabolism in rat ependymal primary cultures: Regulation by serotonin. Brain Res 2005, 1060:89-99.
  • [57]Gotts J, Chesselet M: Mechanisms of subventricular zone expansion after focal cortical ischemic injury. J Comp Neurol 2005, 25:201-214.
  • [58]Ong J, Plane J, Parent J, Silverstein F: Hypoxic-ischemic injury stimulates subventricular zone proliferation and neurogenesis in the neonatal rat. Pediatr Res 2005, 58:600-606.
  • [59]Quinones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadech Z, Gil-Perotin S, Romero-Rodriguez R, Berger M, Garcia-Verdugo JM, Alvarez-Buylla A: Cellular composition and cytoarchitecture of the adult human Subventricular Zone: a niche of neural stem cells. J Comp Neurol 2006, 494:415-434.
  • [60]Eells J, Spector R: Determination of ribonucleosides, deoxyribonucleosides, and purine and pyrimidine bases in adult rabbit cerebrospinal fluid and plasma. Neurochem Res 1983, 8:1307-1320.
  • [61]Eells J, Spector R, Huntoon S: Nucleoside and oxypurine homeostasis in adult rabbit cerebrospinal fluid and plasma. J Neurochem 1984, 42:1620-1624.
  • [62]Soares F, Schmidt A, Farina M, Frizzo M, Tavares R, Portela L, Lara D, Souza D: Anticonvulsant effect of GMP depends on its conversion to guanosine. Brain Res 2004, 1005:182-186.
  • [63]Deutsch S, Long K, Rosse R, Mastropaolo J, Eller J: Hypothesized deficiency of guanine-based purines may contribute to abnormalities of neurodevelopment, neuromodulation, and neurotransmission in Lesch-Nyhan syndrome. Clin Neuropharmacol 2005, 28:28-37.
  • [64]Frizzo M, Antunes Soares F, Dall'Onder L, Lara D, Swanson R, Souza D: Extracellular conversion of guanine-based purines to guanosine specifically enhances astrocyte glutamate uptake. Brain Res 2003, 972:84-89.
  • [65]Schmidt A, Lara D, de Faria Maraschin J, da Silveira Perla A, Onofre Souza D: Guanosine and GMP prevent seizures induced by quinolinic acid in mice. Brain Res 2000, 864:40-43.
  • [66]Schmidt A, Böhmer A, Leke R, Schallenberger C, Antunes C, Pereira M, Wofchuk S, Elisabetsky E, Souza D: Antinociceptive effects of intracerebroventricular administration of guanine-based purines in mice: evidences for the mechanism of action. Brain Res 2008, 1234:50-58.
  • [67]Latini S, Pedata F: Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 2001, 79:463-484.
  • [68]Moatassim C, Dornand J, Mani J: Extracellular ATP and cell signaling. Biochim Biophys Acta 1992, 1134:31-45.
  • [69]Wardas J: Neuroprotective role of adenosine in CNS. Pol J Pharmacol 2002, 54:313-326.
  • [70]Gever J, Cockayne D, Dillon M, Burnstock G, Ford A: Pharmacology of P2X channels. Pflugers Arch 2006, 452:513-537.
  • [71]Di Virgilio F: P2 Receptors of microglia: sensors for danger signals in the CNS. J Neurochem 2002, 81:115.
  • [72]Dell'Antonio G, Quattrini A, Dal Cin E, Fulgenzi A, Ferrero M: Antinociceptive effect of a new P2Z/P2X7 antagonist, oxidized ATP, in arthritic rats. Neurosci Lett 2002, 327:87-90.
  • [73]Ballerini P, Ciccarelli R, Caciagli F, Rathbone M, Werstiuk E, Traversa U, Buccella S, Giuliani P, Jang S, Nargi E, Visini D, Santavenere C, Di Iorio P: P2X7 receptor activation in rat brain cultured astrocytes increases the biosynthetic release of cysteinyl leukotrienes. Int J Immunopathol Pharmacol 2005, 18:417-430.
  • [74]Gandelman M, Peluffo H, Beckman J, Cassina P, Barbeito L: Extracellular ATP and the P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis. J Neuroinflammation 2010, 7:33. BioMed Central Full Text
  • [75]Walentynowicz K, Szefer M, Wojtal B, Terlecki P, Wrotek S, Kozak W: Role of prostaglandins in heme-induced fever. J Physiol Pharm 2006, 57:73-82.
  • [76]Cruz Portela L, Oses J, Silvera A, Schmidt A, Lara D, Oliveira Bastini A, Ramirez G, Vinade L, Freitas Sarkis J, Souza D: Guanine and adenine nucleotidaseactivities in rat cerebrospinal fluid. Brain Res 2002, 1:74-78.
  • [77]Todorov L, Mihaylova-Todorova S, Westfall T, Sneddon P, Kennedy C, Bjur R, Westfall D: Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation. Nature 1997, 387:76-79.
  • [78]Yang M, Kirley TL: Engineered human soluble calcium-activated nucleotidase inhibits coagulation in vitro and thrombosis in vivo. Thromb Res 2008, 122:541-548.
  • [79]Stefan C, Jansen S, Bollen M: Modulation of purinergic signaling by NPP-type ectophosphodiesterases. Purinergic Signal 2006, 2:361-370.
  • [80]Trautmann A: Extracellular ATP in immune system: more than just a danger signal. Sci Signal 2009, 2:1-3.
  文献评价指标  
  下载次数:9次 浏览次数:0次