期刊论文详细信息
Biotechnology for Biofuels
Coupled enzymatic hydrolysis and ethanol fermentation: ionic liquid pretreatment for enhanced yields
Venkata Prabhakar Soudham2  Dilip Govind Raut1  Ikenna Anugwom1  Tomas Brandberg2  Christer Larsson2  Jyri-Pekka Mikkola3 
[1] Department of Chemistry, Technical Chemistry and Sustainable Chemical Technology, Chemical-Biological Centre, Umeå University, Umeå, 901 87, Sweden
[2] Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Göteborg, 412 96, Sweden
[3] Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Åbo-Turku, 20500, Finland
关键词: Bio-fuels;    Ethanol;    Fermentation;    Hydrolysis;    Pretreatment;    (Switchable) Ionic liquids;    Lignocellulose;   
Others  :  1228145
DOI  :  10.1186/s13068-015-0310-3
 received in 2015-04-21, accepted in 2015-08-11,  发布年份 2015
PDF
【 摘 要 】

Background

Pretreatment is a vital step upon biochemical conversion of lignocellulose materials into biofuels. An acid catalyzed thermochemical treatment is the most commonly employed method for this purpose. Alternatively, ionic liquids (ILs), a class of neoteric solvents, provide unique opportunities as solvents for the pretreatment of a wide range of lignocellulose materials. In the present study, four ionic liquid solvents (ILs), two switchable ILs (SILs) DBU–MEA–SO 2and DBU–MEA–CO 2 , as well as two ‘classical’ ILs [Amim][HCO 2 ] and [AMMorp][OAc], were applied in the pretreatment of five different lignocellulosic materials: Spruce (Picea abies) wood, Pine (Pinus sylvestris) stem wood, Birch (Betula pendula) wood, Reed canary grass (RCG, Phalaris arundinacea), and Pine bark. Pure cellulosic substrate, Avicel, was also included in the study. The investigations were carried out in comparison to acid pretreatments. The efficiency of different pretreatments was then evaluated in terms of sugar release and ethanol fermentation.

Results

Excellent glucan-to-glucose conversion levels (between 75 and 97 %, depending on the biomass and pretreatment process applied) were obtained after the enzymatic hydrolysis of IL-treated substrates. This corresponded between 13 and 77 % for the combined acid treatment and enzymatic hydrolysis. With the exception of 77 % for pine bark, the glucan conversions for the non-treated lignocelluloses were much lower. Upon enzymatic hydrolysis of IL-treated lignocelluloses, a maximum of 92 % hemicelluloses were also released. As expected, the ethanol production upon fermentation of hydrolysates reflected their sugar concentrations, respectively.

Conclusions

Utilization of various ILs as pretreatment solvents for different lignocelluloses was explored. SIL DBU–MEA–SO 2was found to be superior solvent for the pretreatment of lignocelluloses, especially in case of softwood substrates (i.e., spruce and pine). In case of birch and RCG, the hydrolysis efficiency of the SIL DBU–MEA–CO 2was similar or even better than that of DBU–MEA–SO 2 . Further, the IL [AMMorp][OAc] was found as comparably efficient as DBU–MEA–CO 2.Pine bark was highly amorphous and none of the pretreatments applied resulted in clear benefits to improve the product yields.

【 授权许可】

   
2015 Soudham et al.

【 预 览 】
附件列表
Files Size Format View
20151010002130170.pdf 1144KB PDF download
Fig.6. 32KB Image download
Fig. 5. 100KB Image download
Fig.4. 129KB Image download
Fig. 3. 75KB Image download
Fig.2. 99KB Image download
Fig.1. 28KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig. 3.

Fig.4.

Fig. 5.

Fig.6.

【 参考文献 】
  • [1]Binder JB, Raines RT: Fermentable sugars by chemical hydrolysis of biomass. PNAS Appl Biol Sci Chem 2010, 107:4516-4521.
  • [2]Ungurean M, Fiţigău F, Paul C, Ursoiu A, Peter F: Ionic liquid pretreatment and enzymatic hydrolysis of wood biomass. World Acad Sci Eng Technol 2011, 52:387-391.
  • [3]Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE: Lignin valorization: improving lignin processing in the biorefinery. Science 2014, 344:6185.
  • [4]Zha Y, Punt PJ: Exometabolomics approaches in studying the application of lignocellulosic biomass as fermentation feedstock. Metabolites 2013, 3:119-143.
  • [5]Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 2010, 101:4851-4861.
  • [6]Da Costa Lopes AM, João KG, Bogel-Łukasik E, Roseiro LB, Bogel-Łukasik R: Pretreatment and fractionation of wheat straw using various ionic liquids. J Agric Food Chem 2013, 61(33):7874-7882.
  • [7]Galbe M, Zacchi G: Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Engin Biotechnol 2007, 108:41-65.
  • [8]Mäki-Arvela P, Anugwoma I, Virtanen P, Sjoholm R, Mikkola JP: Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 2010, 32:175-201.
  • [9]Sathitsuksanoh N, George A, Zhang YHP: New lignocellulose pretreatments using cellulose solvents: a review. J Chem Technol Biotechnol 2012.
  • [10]Zhang B, Shahbazi A: Recent developments in pretreatment technologies for production of lignocellulosic biofuels. J Pet Environ Biotechnol 2011, 2(2):111.
  • [11]Zhu S, Yu P, Wang Q, Cheng B, Chen J, Wu Y: Breaking the barriers of lignocellulosic ethanol production using ionic liquid technology. Bioresources 2013, 8(2):1510-1512.
  • [12]Bozell JJ: An evolution from pretreatment to fractionation will enable successful development of the integrated biorefinery. Bioresources 2010, 5(3):1326-1327.
  • [13]Argyropoulos DS, Raleigh NC (2013) High value lignin derivatives, polymers, and copolymers and use thereof in thermoplastic, thermoset, composite, and carbon fiber applications. USPTO Patent: US 13771653. October 3
  • [14]Kumar S, Singh SP, Mishra IM, Adhikari DK: Recent advances in production of bioethanol from lignocellulosic biomass. Chem Eng Technol 2009, 32(4):517-526.
  • [15]Raganati F, Curth S, Götz P, Olivieri G, Marzocchella A: Butanol production from lignocellulosic-based hexoses and pentoses by fermentation of Clostridium Acetobutylicum. Chem Eng Trans 2012, 27:91-96.
  • [16]Tashiro Y, Yoshida T, Noguchi T, Sonomoto K: Recent advances and future prospects for increased butanol production by acetone–butanol–ethanol fermentation. Eng Life Sci 2013, 00:1-14.
  • [17]Wyman CE: Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol 1994, 50:3-16.
  • [18]Liu CZ, Wang Feng, Stiles AR, Guo C: Ionic liquids for biofuel production: opportunities and challenges. Appl Energy 2012, 92:406-414.
  • [19]Brandt A, Gräsvik J, Halletta JP, Welton T: Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 2013, 15(3):550-583.
  • [20]Leskinen T, King AW, Kilpeläinen I, Argyropoulos DS: Fractionation of lignocellulosic materials using ionic liquids: Part 2. Effect of particle size on the mechanisms of fractionation. Ind Eng Chem Res 2013, 52(11):3958-3966.
  • [21]Da Costa Lopes AM, João KG, Morais AR C, Bogel-Łukasik E, Bogel-Łukasik R (2013b) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain Chem Process 1. doi:10.1186/2043-7129-1-3
  • [22]Da Costa Lopes AM, Joao KG, Rubik DF, Bogel-Łukasik E, Duarte LC, Andreaus J, Bogel-Łukasik R: Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Bioresour Technol 2013, 142:198-208.
  • [23]Magalhães da Silva SP, da Costa Lopes AM, Roseiro LB, Bogel-Lukasik R: Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids. RSC Adv 2013, 3:16040-16050.
  • [24]George A, Brandt A, Tran K, Zahari SMS-NS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R, Singh S, Holmes BM, Welton T, Simmons BA, Hallett JP: Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 2015, 17:1728-1734.
  • [25]Chen L, Sharifzadeh M, MacDowell N, Welton T, Shah N, Hallett JP: Inexpensive ionic liquids: [HSO 4 ] − -based solvent production at bulk scale. Green Chem 2014, 16(6):3098-3106.
  • [26]Da Costa Lopes AM, Bogel-Łukasik R: Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts. Chem Sus Chem 2015, 8:947-965.
  • [27]Anugwom I, Eta V, Virtanen P, Maki-Arvela P, Hedenstrom M, Yibo M, Hummel M, Sixta H, Mikkola JP: Towards optimal selective fractionation for Nordic woody biomass using novel amine–organic superbase derived switchable ionic liquids (SILs). Biomass Bioenergy 2014, 70:373-381.
  • [28]Anugwom I, Eta V, Virtanen P, Mki-Arvela P, Hedenstrçm M, Hummel M, Sixta H, Mikkola JP: Switchable ionic liquids as delignification solvents for lignocellulosic materials. Chem Sus Chem 2014, 7:1170-1176.
  • [29]Groff D, George A, Sun N, Sathitsuksanoh N, Bokinsky G, Simmons BA, Holmes BM, Keasling JD: Acid enhanced ionic liquid pretreatment of biomass. Green Chem 2013, 15:1264-1267.
  • [30]Lozano P, Bernal B, Recioa I, Belleville M-P: A cyclic process for full enzymatic saccharification of pretreated cellulose with full recovery and reuse of the ionic liquid 1-butyl-3-methylimidazolium chloride. Green Chem 2012, 14:2631-2637.
  • [31]Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD: Complete dissolution and partial delignification of wood in the ionic liquid1-ethyl-3-methylimidazolium acetate. Green Chem 2009, 11:646-655.
  • [32]Ungurean M, Csanádi Z, Gubicza L, Péter F: An integrated process of ionic liquid pretreatment and enzymatic hydrolysis of lignocellulosic biomass with immobilised cellulase. Bioresources 2014, 9(4):6100-6116.
  • [33]Soudham VP, Gräsvik J, Alriksson B, Mikkola J-P, Jönsson LJ: Enzymatic hydrolysis of Norway spruce and sugarcane bagasse after treatment with 1-allyl-3-methylimidazolium formate. J Chem Technol Biotechnol 2013, 88(12):2209-2215.
  • [34]Su W (2012) A study of cellulose dissolution in ionic liquidwater brines. Umeå University. Available
  • [35]Nunes E, Quilhó T, Pereira H: Anatomy and chemical composition of Pinus pinea L. bark. Ann For Sci 1999, 56:479-484.
  • [36]Räisänen T, Athanassiadis D (2013) Basic chemical composition of the biomass components of pine, spruce and birch.
  • [37]Valentín L, Kluczek-Turpeinen B, Willför S, Hemming J, Hatakka A, Steffen K, Tuomela M: Scots pine (Pinus sylvestris) bark composition and degradation by fungi: potential substrate for bioremediation. Bioresour Technol 2010, 101:2203-2209.
  • [38]Yang B, Dai Z, Ding SY, Wyman CE: Enzymatic hydrolysis of cellulosic biomass. Biofuels 2011, 2(4):421-450.
  • [39]Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S: Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 2010, 101(13):4900-4906.
  • [40]Lee SH, Doherty TV, Linhardt RJ, Dordick JS: Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 2009, 102(5):1368-1376.
  • [41]Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, et al.: Inhibition of enzymatic hydrolysis by residual lignins from softwood–study of enzyme binding and inactivation on lignin-rich surface. Biotechnol Bioeng 2011, 08(12):2823-2834.
  • [42]Rahikainen J, Martin-Sampedro R, Heikkinen H, Rovio S, Marjamaa K, Tamminen T, Rojas OJ, Kruus K: Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Bioresour Technol 2013, 133:270-278.
  • [43]Zhu L, O’Dwyer JP, Chang VS, Granda CB, Holtzapple MT: Structural features affecting biomass enzymatic digestibility. Bioresour Technol 2008, 99:3817-3828.
  • [44]Singh S, Simmons BA, Vogel KP: Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 2009, 104:68-75.
  • [45]Tadesse H, Luque R: Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 2011, 4:3913-3929.
  • [46]Abu-Eishah SI (2011) Ionic liquids recycling for reuse. In: Handy S (ed) Ionic liquids-classes and properties: InTech
  • [47]Lan Mai N, Ahn K, Koo Y-M: Methods for recovery of ionic liquids—a review. Process Biochem 2014, 49:872-881.
  • [48]Vancov T, Alston A-S, Brown T, McIntosh S: Use of ionic liquids in converting lignocellulosic material to biofuels. Renew Energy 2012, 45:1-6.
  • [49]Weerachanchai P, Lee JM: Recyclability of an ionic liquid for biomass pretreatment. Bioresour Technol 2014, 169:336-343.
  • [50]Hou XD, Smith TJ, Li N, Zong MH: Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol Bioeng 2012, 109(10):2484-2493.
  • [51]Mou HY, Orblin E, Kruus K, Fardim P: Topochemical pretreatment of wood biomass to enhance enzymatic hydrolysis of polysaccharides to sugars. Bioresour Technol 2013, 142:540-545.
  • [52]Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G: Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol 2014, 151:402-405.
  • [53]Samayam IP, Hanson BL, Langan P, Schall CA: Ionic-liquid induced changes in cellulose structure associated with enhanced biomass hydrolysis. Biomacromolecules 2011, 12(8):3091-3098.
  • [54]Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (1998b) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP). Technical Report NREL/TP-510-42618. Golden, Colorado: National Renewable Energy Laboratory
  • [55]Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (1998a) Determination of extractives in biomass. Laboratory Analytical Procedure (LAP). Technical Report NREL/TP-510-42619. Golden, Colorado: National Renewable Energy Laboratory
  • [56]Pedersen M, Meyer AS: Lignocellulose pretreatment severity – relating pH to biomatrix opening. New Biotechnol 2010, 27(6):739-750.
  • [57]Wang Y, Wei L, Li K, Ma Y, Ma N, Ding S, Wang L, Zhao D, Yan B, Wan W, Zhang Q, Wang X: Lignin dissolution in dialkylimidazolium-based ionic liquid-water mixtures. Bioresour Technol 2014, 170:499-505.
  • [58]Soudham VP, Brandberg T, Mikkola JP, Larsson C: Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation. Bioresour Technol 2014, 66:559-565.
  文献评价指标  
  下载次数:232次 浏览次数:75次