| BMC Biotechnology | |
| Serum-free microcarrier based production of replication deficient Influenza vaccine candidate virus lacking NS1 using Vero cells | |
| Allen Chen1  Swan Li Poh1  Christian Dietzsch2  Elisabeth Roethl2  Mylene L Yan1  Say Kong Ng1  | |
| [1] Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore | |
| [2] Avir Green Hills Biotechnology, Forsthausgasse 11, 1200 Vienna, Austria | |
| 关键词: Bioreactor; NS1; Microcarrier; Vero; Influenza; | |
| Others : 1145892 DOI : 10.1186/1472-6750-11-81 |
|
| received in 2011-05-09, accepted in 2011-08-11, 发布年份 2011 | |
PDF
|
|
【 摘 要 】
Background
Influenza virus is a major health concern that has huge impacts on the human society, and vaccination remains as one of the most effective ways to mitigate this disease. Comparing the two types of commercially available Influenza vaccine, the live attenuated virus vaccine is more cross-reactive and easier to administer than the traditional inactivated vaccines. One promising live attenuated Influenza vaccine that has completed Phase I clinical trial is deltaFLU, a deletion mutant lacking the viral Nonstructural Protein 1 (NS1) gene. As a consequence of this gene deletion, this mutant virus can only propagate effectively in cells with a deficient interferon-mediated antiviral response. To demonstrate the manufacturability of this vaccine candidate, a batch bioreactor production process using adherent Vero cells on microcarriers in commercially available animal-component free, serum-free media is described.
Results
Five commercially available animal-component free, serum-free media (SFM) were evaluated for growth of Vero cells in agitated Cytodex 1 spinner flask microcarrier cultures. EX-CELL Vero SFM achieved the highest cell concentration of 2.6 × 10^6 cells/ml, whereas other SFM achieved about 1.2 × 10^6 cells/ml. Time points for infection between the late exponential and stationary phases of cell growth had no significant effect in the final virus titres. A virus yield of 7.6 Log10 TCID50/ml was achieved using trypsin concentration of 10 μg/ml and MOI of 0.001. The Influenza vaccine production process was scaled up to a 3 liter controlled stirred tank bioreactor to achieve a cell density of 2.7 × 10^6 cells/ml and virus titre of 8.3 Log10 TCID50/ml. Finally, the bioreactor system was tested for the production of the corresponding wild type H1N1 Influenza virus, which is conventionally used in the production of inactivated vaccine. High virus titres of up to 10 Log10 TCID50/ml were achieved.
Conclusions
We describe for the first time the production of Influenza viruses using Vero cells in commercially available animal-component free, serum-free medium. This work can be used as a basis for efficient production of attenuated as well as wild type Influenza virus for research and vaccine production.
【 授权许可】
2011 Chen et al; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150403050118266.pdf | 2686KB | ||
| Figure 9. | 18KB | Image | |
| Figure 8. | 186KB | Image | |
| Figure 7. | 58KB | Image | |
| Figure 6. | 71KB | Image | |
| Figure 5. | 38KB | Image | |
| Figure 4. | 39KB | Image | |
| Figure 3. | 46KB | Image | |
| Figure 2. | 48KB | Image | |
| Figure 1. | 95KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
【 参考文献 】
- [1]Poland GA, Jacobson RM, Targonski PV: Avian and pandemic influenza: An overview. Vaccine 2007, 25:3057-3061.
- [2]Kendal AP, Maassab HF, Alexandrova GI, Ghendon YZ: Development of cold-adapted recombinant live, attenuated influenza A vaccines in the U.S.A. and U.S.S.R. Antivir Res 1982, 1(6):339-365.
- [3]ADIS: Influenza Virus Vaccine Live Intranasal - MedImmune Vaccines: CAIV-T, Influenza Vaccine Live Intranasal. Drugs R D 2003, 4(5):312-319.
- [4]Maassab HF, Bryant ML: The development of live attenuated cold-adapted influenza virus vaccine for humans. Rev Med Virol 1999, 9:237-244.
- [5]Belshe R, Lee M-S, Walker RE, Stoddard J, Mendelman PM: Safety, immunogenicity and efficacy of intranasal, live attenuated influenza vaccine. Expert Rev Vaccines 2004, 3(6):643-654.
- [6]Richt JA, García-Sastre A: Attenuated influenza virus vaccines with modified NS1 proteins. Curr Top Microbiol Immunol 2009, 333:177-195.
- [7]Treanor JJ, Kotloff K, Betts RF, Belshe R, Newman F, Iacuzio D, Wittes J, Bryant M: Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated (TIV) influenza vaccines in prevention of virus infection and illness following challenge of adults with wild-type influenza A (H1N1), A (H3N2), and B viruses. Vaccine 1999, 18(9-10):899-906.
- [8]García-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P, Muster T: Influenza A Virus Lacking the NS1 Gene Replicates in Interferon-Deficient Systems. Virology 1998, 252(2):324-330.
- [9]Hai R, Martínez-Sobrido L, Fraser KA, Ayllon J, García-Sastre A, Palese P: Influenza B Virus NS1-Truncated Mutants: Live-Attenuated Vaccine Approach. J Virol 2008, 82(21):10580-10590.
- [10]Steel J, Lowen AC, Pena L, Angel M, Solórzano A, Albrecht R, Perez DR, García-Sastre A, Palese P: Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J Virol 2009, 83(4):1742-1753.
- [11]Talon J, Salvatore M, O'Neill RE, Nakaya Y, Zheng H, Muster T, García-Sastre A, Palese P: Influenza A and B viruses expressing altered NS1 proteins: A vaccine approach. Proc Natl Acad Sci USA 2000, 97(8):4309-4314.
- [12]Wacheck V, Egorov A, Groiss F, Pfeiffer A, Fuereder T, Hoeflmayer D, Kundi M, Popow-Kraupp T, Redlberger-Fritz M, Mueller CA, et al.: A Novel Type of Influenza Vaccine: Safety and Immunogenicity of Replication-Deficient Influenza Virus Created by Deletion of the Interferon Antagonist NS1. J Infect Dis 2010, 201:354-362.
- [13]Kochs G, García-Sastre A, Martínez-Sobrido L: Multiple anti-interferon actions of the influenza A virus NS1 protein. J Virol 2007, 81(13):7011-7021.
- [14]Diaz MO, Ziemin S, Le Beau MM, Pitha P, Smith SD, Chilcote RR, Rowley JD: Homozygous deletion of the alpha- and beta 1-interferon genes in human leukemia and derived cell lines. Proc Natl Acad Sci USA 1988, 85(14):5259-5263.
- [15]Mosca JD, Pitha PM: Transcriptional and posttranscriptional regulation of exogenous human beta interferon gene in simian cells defective in interferon synthesis. Mol Cell Biol 1986, 6(6):2279-2283.
- [16]Egorov A, Brandt S, Sereinig S, Romanova J, Ferko B, Katinger D, Grassauer A, Alexandrova G, Katinger H, Muster T: Transfectant Influenza A Viruses with Long Deletions in the NS1 Protein Grow Efficiently in Vero Cells. J Virol 1998, 72(8):6437-6441.
- [17]Wressnigg N, Shurygina AP, Wolff T, Redlberger-Fritz M, Popow-Kraupp T, Muster T, Egorov A, Kittel C: Influenza B mutant viruses with truncated NS1 proteins grow efficiently in Vero cells and are immunogenic in mice. J Gen Virol 2009, 90:366-374.
- [18]Efferson CL, Schickli J, Ko BK, Kawano K, Mouzi S, Palese P, García-Sastre A, Ioannides CG: Activation of tumor antigen-specific cytotoxic T lymphocytes (CTLs) by human dendritic cells infected with an attenuated influenza A virus expressing a CTL epitope derived from the HER-2/neu proto-oncogene. J Virol 2003, 77(13):7411-7424.
- [19]Efferson CL, Tsuda N, Kawano K, Nistal-Villán E, Sellappan S, Yu D, Murray JL, García-Sastre A, Ioannides CG: Prostate Tumor Cells Infected with a Recombinant Influenza Virus Expressing a Truncated NS1 Protein Activate Cytolytic CD8+ Cells To Recognize Noninfected Tumor Cells. J Virol 2006, 80(1):383-394.
- [20]He Q, Martinez-Sobrido L, Eko FO, Palese P, Garcia-Sastre A, Lyn D, Okenu D, Bandea C, Ananaba GA, Black CM, et al.: Live-attenuated influenza viruses as delivery vectors for Chlamydia vaccines. Immunology 2007, 122(1):28-37.
- [21]Genzel Y, Reichl U: Continuous cell lines as a production system for influenza vaccines. Expert Rev Vaccines 2009, 8(12):1681-1692.
- [22]Hu AY-C, Weng T-C, Tseng Y-F, Chen Y-S, Wu C-H, Hsiao S, Chou A-H, Chao H-J, Gu A, Wu S-C, et al.: Microcarrier-based MDCK cell culture system for the production of influenza H5N1 vaccines. Vaccine 2008, 26(45):5736-5740.
- [23]Pau MG, Ophorst C, Koldijk MH, Schouten G, Mehtali M, Uytdehaag F: The human cell line PER.C6 provides a new manufacturing system for the production of influenza vaccines. Vaccine 2001, 19:2716-2721.
- [24]Ambrozaitis A, Groth N, Bugarini R, Sparacio V, Podda A, Lattanzi M: A novel mammalian cell-culture technique for consistent production of a well-tolerated and immunogenic trivalent subunit influenza vaccine. Vaccine 2009, 27(43):6022-6029.
- [25]Doroshenko A, Halperin SA: Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis Vaccines). Expert Rev Vaccines 2009, 8(6):679-688.
- [26]Genzel Y, Fischer M, Reichl U: Serum-free influenza virus production avoiding washing steps and medium exchange in large-scale microcarrier culture. Vaccine 2006, 24(16):3261-3272.
- [27]Genzel Y, Olmer RM, Schäfer B, Reichl U: Wave microcarrier cultivation of MDCK cells for influenza virus production in serum containing and serum-free media. Vaccine 2006, 24(35-36):6074-6087.
- [28]Ghendon YZ, Markushin SG, Akopova II, Koptiaeva IB, Nechaeva EA, Mazurkova LA, Radaeva IF, Kolokoltseva TD: Development of cell culture (MDCK) live cold-adapted (CA) attenuated influenza vaccine. Vaccine 2005, 23(38):4678-4684.
- [29]Liu J, Mani S, Schwartz R, Richman L, Tabor DE: Cloning and assessment of tumorigenicity and oncogenicity of a Madin-Darby canine kidney (MDCK) cell line for influenza vaccine production. Vaccine 2010, 28(5):1285-1293.
- [30]Liu J, Shi X, Schwartz R, Kemble G: Use of MDCK cells for production of live attenuated influenza vaccine. Vaccine 2009, 27(46):6460-6463.
- [31]Hu W-S, Giard DJ, Wang DIC: Serial Propagation of Mammalian Cells on Microcarriers. Biotechnol Bioeng 1985, 27(10):1466-1476.
- [32]Kistner O, Barrett PN, Mundt W, Reiter M, Schober-Bendixen S, Dorner F: Development of a mammalian cell (Vero) derived candidate influenza virus vaccine. Vaccine 1998, 16(9-10):960-968.
- [33]Ng Y-C, Berry JM, Butler M: Optimization of physical parameters for cell attachment and growth on macroporous microcarriers. Biotechnol Bioeng 1996, 50(6):627-635.
- [34]Yokomizo AY, Antoniazzi MM, Galdino PL, A N Jr, Jorge SAC, Pereira CA: Rabies virus production in high vero cell density cultures on macroporous microcarriers. Biotechnol Bioeng 2004, 85(5):506-515.
- [35]Genzel Y, Dietzsch C, Rapp E, Schwarzer J, Reichl U: MDCK and Vero cells for influenza virus vaccine production: a one-to-one comparison up to lab-scale bioreactor cultivation. Appl Microbiol Biotechnol 2010, 88(2):461-475.
- [36]Cinatl JJ, Cinatl J, Rabenau H, Rapp J, Kornhuber B, Doerr H: Protein-free culture of Vero cells: A substrate for replication of pathogenic viruses. Cell Biol Int 1993, 17(9):885-895.
- [37]Merten O-W, Kierulff JV, Castignolles N, Perrin P: Evaluation of the new serum free medium (MDSS2) for the production of different biologicals: use of various cell lines. Cytotechnology 1994, 14(1):47-59.
- [38]Yuk IH, Lin GB, Ju H, Sifi I, Lam Y, Cortez A, Liebertz D, Berry JM, Schwartz RM: A serum-free Vero production platform for a chimeric virus vaccine candidate. Cytotechnology 2006, 51:183-192.
- [39]Rourou S, van der Ark A, van der Velden T, Kallel H: A microcarrier cell culture process for propagating rabies virus in Vero cells grown in a stirred bioreactor under fully animal component free conditions. Vaccine 2007, 25(19):3879-3889.
- [40]Tiwari M, Parida M, Santhosh SR, Khan M, Dash PK, Rao PVL: Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of Chikungunya virus. Vaccine 2009, 27(18):2513-2522.
- [41]Souza MCO, Freire MS, Schulze EA, Gaspar LP, Castilho LR: Production of yellow fever virus in microcarrier-based vero cell cultures. Vaccine 2009, 27(46):6420-6423.
- [42]Silva AC, Delgado I, Sousa MFQ, Carrondo MJT, Alves PM: Scalable culture systems using different cell lines for the production of Peste des Petits ruminants vaccine. Vaccine 2008, 26:3305-3311.
- [43]Liu C-C, Lian W-C, Butler M, Wu S-C: High immunogenic enterovirus 71 strain and its production using serum-free microcarrier Vero cell culture. Vaccine 2007, 25(1):19-24.
- [44]Butler M, Burgener A, Patrick M, Berry M, Moffatt D, Huzel N, Barnabé N, Coombs K: Application of a Serum-Free Medium for the Growth of Vero Cells and the Production of Reovirus. Biotechnol Prog 2000, 16(5):854-858.
- [45]Rourou S, van der Ark A, Majoul S, Trabelsi K, van der Velden T, Kallel H: A novel animal-component-free medium for rabies virus production in Vero cells grown on Cytodex 1 microcarriers in a stirred bioreactor. Appl Microbiol Biotechnol 2009, 85(1):53-63.
- [46]Petiot E, Fournier F, Gény C, Pinton H, Marc A: Rapid Screening of Serum-Free Media for the Growth of Adherent Vero Cells by Using a Small-Scale and Non-invasive Tool. Appl Biochem Biotechnol 2010, 160(6):1600-1615.
- [47]Frazzati-Gallina NM, Paoli RL, Mourão-Fuches RM, Jorge SAC, Pereira CA: Higher production of rabies virus in serum-free medium cell cultures on microcarriers. J Biotechnol 2001, 92:67-72.
- [48]Quesney S, Marvel J, Gerdil C, Meignier B: Characterization of Vero cell growth and death in bioreactor with serum-containing and serum-free media. Cytotechnology 2001, 35:115-125.
- [49]Souza MCdO, Freire MdS, Castilho LdR: Influence of Culture Conditions on Vero Cell Propagation on Non-Porous Microcarriers. Braz Arch Biol Technol 2005, 48:71-77.
- [50]Quesney Sb, Marc A, Gerdil C, Gimenez C, Marvel J, Richard Y, Meignier B: Kinetics and metabolic specificities of Vero cells in bioreactor cultures with serum-free medium. Cytotechnology 2003, 42:1-11.
- [51]Wood HA, Johnston LB, Burand JP: Inhibition of Autographa californica Nuclear Polyhedrosis Virus Replication in High-Density Trichoplusia ni Cell Culture. Virology 1982, 119:245-254.
- [52]Kamen A, Henry O: Development and optimization of an adenovirus production process. J Gene Med 2004, 6:S184-S192.
- [53]Yuk IHY, Olsen MM, Geyer S, Forestell SP: Perfusion cultures of human tumor cells: a scalable production platform for oncolytic adenoviral vectors. Biotechnol Bioeng 2004, 86(6):637-642.
- [54]Bock A, Schulze-Horsel J, Rapp E, Genzel Y, Reichl U: High-Density Microcarrier Cell Cultures for Influenza Virus Production. Biotechnol Prog 2011, 27(1):241-250.
- [55]Ghani K, Garnier A, Coelho H, Transfiguracion J, Trudel P, Kamen A: Retroviral vector production using suspension-adapted 293GPG cells in a 3L acoustic filter-based perfusion bioreactor. Biotechnol Bioeng 2006, 95(4):653-660.
- [56]Merten O-W: State-of-the-art of the production of retroviral vectors. J Gene Med 2004, 6:S105-S124.
- [57]Beer C, Meyer A, Müller K, Wirth M: The temperature stability of mouse retroviruses depends on the cholesterol levels of viral lipid shell and cellular plasma membrane. Virology 2003, 308(1):137-146.
- [58]Le Rub A, Jacob D, Transfiguracion J, Ansorge S, Henry O, Kamen AA: Scalable production of influenza virus in HEK-293 cells for efficient vaccine manufacturing. Vaccine 2010, 28(21):3661-3671.
- [59]Barber GN: Host defense, viruses and apoptosis. Cell Death Differ 2001, 8(2):113-126.
- [60]Bergmann M, Garcia-Sastre A, Carnero E, Pehamberger H, Wolff K, Palese P, Muster T: Influenza Virus NS1 Protein Counteracts PKR-Mediated Inhibition of Replication. J Virol 2000, 74(13):6203-6206.
- [61]Hayman A, Comely S, Lackenby A, Hartgroves LCS, Goodbourn S, McCauley JW, Barclay WS: NS1 proteins of avian influenza A viruses can act as antagonists of the human alpha/beta interferon response. J Virol 2007, 81(5):2318-2327.
- [62]Ehrhardt C, Ludwig S: A new player in a deadly game: influenza viruses and the PI3K/Akt signaling pathway. Cell Microbiol 2009, 11(6):863-871.
- [63]Zhirnov OP, Konakova TE, Wolff T, Klenk HD: NS1 Protein of Influenza A Virus Down-Regulates Apoptosis. J Virol 2002, 76(4):1617-1625.
- [64]Ehrhardt C, Wolff T, Ludwig S: Activation of phosphatidylinositol 3-kinase signaling by the nonstructural NS1 protein is not conserved among type A and B influenza viruses. J Virol 2007, 81(21):12097-12100.
- [65]Seitz C, Frensing T, Höper D, Kochs G, Reichl U: High yields of Influenza A virus in MDCK cells are promoted by an insufficient IFN-induced antiviral state. J Gen Virol 2010, 91(7):1754-1763.
- [66]Genzel Y, Behrendt I, Konig S, Sann H, Reichl U: Metabolism of MDCK cells during cell growth and influenza virus production in large-scale microcarrier culture. Vaccine 2004, 22:2202-2208.
- [67]Matlin KS: Ammonium Chloride Slows Transport of the Influenza Virus Hemagglutinin but Does Not Cause Mis-sorting in a Polarized Epthelial Cell Line. J Biol Chem 1986, 261(32):15172-15178.
- [68]Morris SJ, Price GE, Barnett JM, Hiscox SA, Smith H, Sweet C: Role of neuraminidase in influenza virus-induced apoptosis. J Gen Virol 1999, 80:137-146.
- [69]Whittaker G, Bui M, Helenius A: The role of nuclear import and export in influenza virus infection. Trends Cell Biol 1996, 6:67-71.
- [70]Cox N: WHO manual on animal influenza diagnosis and surveillance. In WHO Animal Influenza Manual. Edited by Webster RG, Krauss S. Geneva: World Health Organization; 2002:1-97.
- [71]Reed LJ, Muench H: A simple method of estimating fifty per cent endpoints. The American Journal of Hygiene 1938, 27(3):493-497.
- [72]Karrona RA, Talaat K, Luke C, Callahan K, Thumar B, DiLorenzo S, McAuliffe J, Schappell E, Suguitan A, Mills K, et al.: Evaluation of two live attenuated cold-adapted H5N1 influenza virus vaccines in healthy adults. Vaccine 2009, 27:4953-4960.
- [73]Talaat KR, Karrona RA, Callahan KA, Luke CJ, DiLorenzo SC, Chen GL, Lamirande EW, Jin H, Coelingh KL, Murphy BR, et al.: A live attenuated H7N3 influenza virus vaccine is well tolerated and immunogenic in a Phase I trial in healthy adults. Vaccine 2009, 27:3744-3753.
PDF