期刊论文详细信息
Biotechnology for Biofuels
A novel highly thermostable xylanase stimulated by Ca2+ from Thermotoga thermarum: cloning, expression and characterization
Hao Shi1  Yu Zhang1  Xun Li1  Yingjuan Huang1  Liangliang Wang1  Ye Wang1  Huaihai Ding1  Fei Wang1 
[1] Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, 213337, Nanjing, China
关键词: Birchwood;    Oat spelt;    Beechwood;    Thermostability;    Xylan;    Xylanase;   
Others  :  798145
DOI  :  10.1186/1754-6834-6-26
 received in 2012-11-14, accepted in 2013-02-13,  发布年份 2013
PDF
【 摘 要 】

Background

Xylanase is an important component of hemicellulase enzyme system. Since it plays an important role in the hydrolysis of hemicellulose into xylooligosaccharides (XOs), high thermostable xylanase has been the focus of much recent attention as powerful enzyme as well as in the field of biomass utilization.

Results

A xylanase gene (xyn10A) with 3,474 bp was cloned from the extremely thermophilic bacterium Thermotoga thermarum that encodes a protein containing 1,158 amino acid residues. Based on amino acid sequence homology, hydrophobic cluster and three dimensional structure analyses, it was attested that the xylanase belongs to the glycoside hydrolase (GH) families 10 with five carbohydrate binding domains. When the xylanase gene was cloned and expressed in Escherichia coli BL21 (DE3), the specific enzyme activity of xylanase produced by the recombinant strain was up to 145.8 U mg-1. The xylanase was optimally active at 95°C, pH 7.0. In addition, it exhibited high thermostability over broad range of pH 4.0-8.5 and temperature 55-90°C upon the addition of 5 mM Ca2+. Confirmed by Ion Chromatography System (ICS) analysis, the end products of the hydrolysis of beechwood xylan were xylose, xylobiose, xylotriose, xylotetraose, xylopentaose and xylohexaose.

Conclusions

The xylanase from T. thermarum is one of the hyperthermophilic xylanases that exhibits high thermostability, and thus, is a suitable candidate for generating XOs from cellulosic materials such as agricultural and forestry residues for the uses as prebiotics and precursors for further preparation of furfural and other chemicals.

【 授权许可】

   
2013 Shi et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706102557622.pdf 2474KB PDF download
Figure 4. 302KB Image download
Figure 3. 86KB Image download
Figure 2. 84KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Fuzi SFZM, Mahadi NM, Jahim JM, Murad AMA, Bakar FDA, Jusoh M, Rahman RA, Illias RM: Development and validation of a medium for recombinant endo-β-1,4-xylanase production by Kluyveromyces lactis using a statistical experimental design. Ann Microbiol 2011, 62(1):283-292.
  • [2]Khandeparker R, Verma P, Deobagkar D: A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: gene cloning and sequencing. New Biotechnology 2011, 28(6):814-821.
  • [3]Jiang Z, Cong Q, Yan Q, Kumar N, Du X: Characterisation of a thermostable xylanase from Chaetomium sp. and its application in Chinese steamed bread. Food Chem 2010, 120(2):457-462.
  • [4]Collins T, Gerday C, Feller G: Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 2005, 29(1):3-23.
  • [5]Shallom D, Shoham Y: Microbial hemicellulases. Curr Opin Microbiol 2003, 6(3):219-228.
  • [6]Weng XY, Sun JY: Hydrolysis of xylans by a thermostable hybrid xylanase expressed in Escherichia coli. Appl Biochem Microbiol 2010, 46(5):511-514.
  • [7]Zhang J, Siika-aho M, Puranen T, Tang M, Tenkanen M, Viikari L: Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnology for Biofuels 2011, 4(1):12. BioMed Central Full Text
  • [8]Ruller R, Deliberto L, Ferreira TL, Ward RJ: Thermostable variants of the recombinant xylanase A from Bacillus subtilis produced by directed evolution show reduced heat capacity changes. Proteins 2008, 70(4):1280-1293.
  • [9]Mardanov AV, Svetlitchnyi VA, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG: The genome sequence of the crenarchaeon Acidilobus saccharovorans supports a new order, Acidilobales, and suggests an important ecological role in terrestrial acidic hot Springs. Appl Environ Microbiol 2010, 76(16):5652-5657.
  • [10]Liu L-J, You X-Y, Zheng H, Wang S, Jiang C-Y, Liu S-J: Complete genome sequence of Metallosphaera cuprina, a metal sulfide-oxidizing archaeon from a hot spring. J Bacteriol 2011, 193(13):3387-3388.
  • [11]Mardanov AV, Gumerov VM, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG: Complete genome sequence of the thermoacidophilic crenarchaeon Thermoproteus uzoniensis 768–20. J Bacteriol 2011, 193(12):3156-3157.
  • [12]Liolios K, Sikorski J, Jando M, Lapidus A, Copeland A, Del Rio TG, Nolan M, Lucas S, Tice H, Cheng J-F: Complete genome sequence of Thermobispora bispora type strain (R51(T)). Stand Genomic Sci 2010, 2(3):318-326.
  • [13]Guo L, Brugger K, Liu C, Shah SA, Zheng H, Zhu Y, Wang S, Lillestol RK, Chen L, Frank J: Genome analyses of Icelandic strains of Sulfolobus islandicus, model organisms for genetic and virus-host interaction studies. J Bacteriol 2011, 193(7):1672-1680.
  • [14]Göker M, Held B, Lapidus A, Nolan M, Spring S, Yasawong M, Lucas S, Glavina Del Rio T, Tice H, Cheng J-F: Complete genome sequence of Ignisphaera aggregans type strain (AQ1.S1T). Stand Genomic Sci 2010, 3(1):66-75.
  • [15]Chen LM, Brugger K, Skovgaard M, Redder P, She QX, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP: The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 2005, 187(14):4992-4999.
  • [16]Baba T, Kuwahara-Arai K, Uchiyama I, Takeuchi F, Ito T, Hiramatsu K: Complete genome sequence of Macrococcus caseolyticus strain JSCS5402, reflecting the ancestral genome of the human-pathogenic staphylococci. J Bacteriol 2008, 191(4):1180-1190.
  • [17]Angelov A, Liebl S, Ballschmiter M, Boemeke M, Lehmann R, Liesegang H, Daniel R, Liebl W: Genome sequence of the polysaccharide-degrading, thermophilic anaerobe Spirochaeta thermophila DSM 6192. J Bacteriol 2010, 192(24):6492-6493.
  • [18]Verma D, Satyanarayana T: Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Bioresour Technol 2012, 107:333-338.
  • [19]Derewenda U, Swenson L, Green R, Wei Y, Morosoli R, Shareck F, Kluepfel D, Derewenda ZS: Crystal structure, at 2.6-A resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-D-glycanases. J Biol Chem 1994, 269(33):20811-20814.
  • [20]Zhou WL, Irwin DC, Escovar-Kousen J, Wilson DB: Kinetic studies of Thermobifida fusca Cel9A active site mutant enzymes. Biochemistry 2004, 43(30):9655-9663.
  • [21]Solomon V, Teplitsky A, Shulami S, Zolotnitsky G, Shoham Y, Shoham G: Structure-specificity relationships of an intracellular xylanase from Geobacillus stearothermophilus. Acta Crystallogr D Biol Crystallogr 2007, 63:845-859.
  • [22]Li Y, Irwin DC, Wilson DB: Processivity, Substrate Binding, and Mechanism of Cellulose Hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 2007, 73(10):3165-3172.
  • [23]Zverlov V, Piotukh K, Dakhova O, Velikodvorskaya G, Borriss R: The multidomain xylanase A of the hyperthermophilic bacterium Thermotoga neapolitana is extremely thermoresistant. Appl Microbiol Biotechnol 1996, 45(1–2):245-247.
  • [24]Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT, Nelson KE, Nesbo CL, Doolittle WF, Gogarten JP: On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc Natl Acad Sci USA 2009, 106(14):5865-5870.
  • [25]Swithers KS, DiPippo JL, Bruce DC, Detter C, Tapia R, Han SS, Saunders E, Goodwin LA, Han J, Woyke T: Genome sequence of Thermotoga sp. strain RQ2, a hyperthermophilic bacterium isolated from a geothermally heated region of the seafloor near ribeira quente, the Azores. J Bacteriol 2011, 193(20):5869-5870.
  • [26]Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA: Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 1999, 399(6734):323-329.
  • [27]Zhang M, Jiang Z, Yang S, Hua C, Li L: Cloning and expression of a Paecilomyces thermophila xylanase gene in E. coli and characterization of the recombinant xylanase. Bioresour Technol 2010, 101(2):688-695.
  • [28]Amaya-Delgado L, Mejía-Castillo T, Santiago-Hernández A, Vega-Estrada J, Amelia F-GS, Xoconostle-Cázares B, Ruiz-Medrano R, Montes-Horcasitas MC, Hidalgo-Lara ME: Cloning and expression of a novel, moderately thermostable xylanase-encoding gene (Cfl xyn11A) from Cellulomonas flavigena. Bioresour Technol 2010, 101(14):5539-5545.
  • [29]Ko C-H, Tsai C-H, Tu J, Lee H-Y, Ku L-T, Kuo P-A, Lai Y-K: Molecular cloning and characterization of a novel thermostable xylanase from Paenibacillus campinasensis BL11. Process Biochem 2010, 45(10):1638-1644.
  • [30]Ikram ul H, Hussain Z, Khan MA, Muneer B, Afzal S, Majeed S, Akram F: Kinetic and thermodynamic study of cloned thermostable endo-1,4-β-xylanase from Thermotoga petrophila in mesophilic host. Mol Biol Rep 2012, 39(7):7251-7261.
  • [31]Lafond M, Tauzin A, Desseaux V, Bonnin E, Ajandouz EH, Giardina T: GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharide production. Microbial Cell Factories 2011, 10:20. BioMed Central Full Text
  • [32]Gaffney M, Carberry S, Doyle S, Murphy R: Purification and characterisation of a xylanase from Thermomyces lanuginosus and its functional expression by Pichia pastoris. Enzyme Microb Technol 2009, 45(5):348-354.
  • [33]Jun H, Bing Y, Keying Z, Daiwen C: Functional characterization of a recombinant thermostable xylanase from Pichia pastoris: A hybrid enzyme being suitable for xylooligosaccharides production. Biochem Eng J 2009, 48(1):87-92.
  • [34]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227(5259):680-685.
  • [35]Miller GL: Use of dinitrosalicylic acid reagent for determination of ruducing sugar. Anal Chem 1959, 31(3):426-428.
  • [36]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R: Clustal W and clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  • [37]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [38]Wilgenbusch JC, Swofford D: Inferring evolutionary trees with PAUP*. Curr Protoc Bioinformatics 2003. Chapter 6, Unit 6.4. http://www.currentprotocols.com/protocol/bi0604 webcite
  • [39]Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 2003, 31(13):3381-3385.
  • [40]Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997, 18(15):2714-2723.
  • [41]Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006, 22(2):195-201.
  文献评价指标  
  下载次数:16次 浏览次数:9次