BMC Bioinformatics | |
A p-Median approach for predicting drug response in tumour cells | |
Elisabetta Fersini1  Enza Messina1  Francesco Archetti2  | |
[1] Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca, 336 Milan, Italy | |
[2] Consorzio Milano Ricerche, Viale Cozzi, 53 Milan, Italy | |
关键词: Drug response prediction; Bayesian networks; p-Median clustering; | |
Others : 1085380 DOI : 10.1186/s12859-014-0353-7 |
|
received in 2013-12-09, accepted in 2014-10-16, 发布年份 2014 | |
【 摘 要 】
Background
The complexity of biological data related to the genetic origins of tumour cells, originates significant challenges to glean valuable knowledge that can be used to predict therapeutic responses. In order to discover a link between gene expression profiles and drug responses, a computational framework based on Consensus p-Median clustering is proposed. The main goal is to simultaneously predict (in silico) anticancer responses by extracting common patterns among tumour cell lines, selecting genes that could potentially explain the therapy outcome and finally learning a probabilistic model able to predict the therapeutic responses.
Results
The experimental investigation performed on the NCI60 dataset highlights three main findings: (1) Consensus p-Median is able to create groups of cell lines that are highly correlated both in terms of gene expression and drug response; (2) from a biological point of view, the proposed approach enables the selection of genes that are strongly involved in several cancer processes; (3) the final prediction of drug responses, built upon Consensus p-Median and the selected genes, represents a promising step for predicting potential useful drugs.
Conclusion
The proposed learning framework represents a promising approach predicting drug response in tumour cells.
【 授权许可】
2014 Fersini et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150113172835873.pdf | 1463KB | download | |
Figure 9. | 18KB | Image | download |
Figure 8. | 25KB | Image | download |
Figure 7. | 20KB | Image | download |
Figure 6. | 19KB | Image | download |
Figure 5. | 18KB | Image | download |
Figure 4. | 22KB | Image | download |
Figure 3. | 22KB | Image | download |
Figure 2. | 17KB | Image | download |
Figure 1. | 37KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
【 参考文献 】
- [1]Van Steenbergen L, Elferink M, Krijnen P, Lemmens V, Siesling S, Rutten H, Richel D, Karim-Kos H, Coebergh J: Improved survival of colon cancer due to improved treatment and detection: a nationwide population-based study in the Netherlands 1989–2006. Ann Oncol 2010, 21(11):2206-2212.
- [2]Joerger M, Thürlimann B, Savidan A, Frick H, Bouchardy C, Konzelmann I, Probst-Hensch N, Ess S: A population-based study on the implementation of treatment recommendations for chemotherapy in early breast cancer. Clin Breast Cancer 2012, 12(2):102-109.
- [3]Blower PE, Verducci JS, Lin S, Zhou J, Chung JH, Dai Z, Liu CG, Reinhold W, Lorenzi PL, Kaldjian EP, Croce CM, Weinstein JN, Sadee W: MicroRNA expression profiles for the nci-60 cancer cell panel. Mol Cancer Ther 2007, 6(5):1483-1491.
- [4]Grills C, Jithesh PV, Blayney J, Zhang SD, Fennell DA: Gene expression meta-analysis identifies VDAC1 as a predictor of poor outcome in early stage non-small cell lung cancer. PLoS ONE 2011, 6(1):e14635.
- [5]Masica DL, Karchin R: Collections of simultaneously altered genes as biomarkers of cancer cell drug response. Cancer Res 2013, 73(6):1699-1708.
- [6]Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT, Scudiero DA, Eisen MB, Sausville EA, Pommier Y, Botstein D, Brown PO, Weinstein JN: A gene expression database for the molecular pharmacology of cancer. Nat Genet 2000, 24(3):236-244.
- [7]Chang JH, Hwang KB, Zhang BT: Analysis of gene expression profiles and drug activity patterns by clustering and bayesian network learning. In Methods of Microarray Data Analysis II. Edited by Lin SM, Johnson KF. Springer US, New York; 2002:169-184.
- [8]Chang JH, Hwang KB, Oh SJ, Zhang BT: Bayesian network learning with feature abstraction for gene-drug dependency analysis. J Bioinformatics Comput Biol 2005, 3(1):61-77.
- [9]Burger M, Graepel T, Obermayer K: Phase transitions in soft topographic vector quantization. In Artificial Neural Networks-ICANN’97. Edited by Gerstner W, Germond A, Hasler M, Nicoud JD. Springer Berlin Heidelberg, New York; 1997:619-624.
- [10]Fersini E, Giordani I, Messina E, Archetti F: Relational clustering and bayesian networks for linking gene expression profiles and drug activity patterns. In Proceedings of IEEE International Conference on Bioinformatics and Biomedicine Workshop: 1–4 November 2009; Washington DC. Edited by Chen J. IEEE Computer Society, Washington DC; 2009:20-25.
- [11]Fersini E, Messina E, Archetti F, Manfredotti C: Combining gene expression profiles and drug activity patterns analysis: A relational clustering approach. J Math Modelling Algorithms 2010, 9(3):275-289.
- [12]Archetti F, Giordani I, Vanneschi L: Genetic programming for anticancer therapeutic response prediction using the nci-60 dataset. Comput Oper Res 2010, 37(8):1395-1405.
- [13]Fersini E, Messina E, Leporati A: Discovering gene-drug relationships for the pharmacology of cancer. In Advances in Computational Intelligence - Communications in Computer and Information Science Series. Edited by Greco S, Bouchon-Meunier B, Coletti G, Fedrizzi M, Matarazzo B, Yager R. Springer Berlin Heidelberg, New York; 2012:117-126.
- [14]MacQueen JB: Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability; Berkeley. Edited by LeCam LM, Neyman N. University of California Press, Berkeley, CA; 1967:281-297.
- [15]Iyigun C, Ben-Israel A: A generalized weiszfeld method for the multi-facility location problem. Oper Res Lett 2010, 38(3):207-214.
- [16]Quinlan JR: Induction of decision trees. Mach Learn 1986, 1:81-106.
- [17]Hall M: Correlation-based feature selection for discrete and numeric class machine learning. In Proceedings of Seventeenth International Conference on Machine Learning: June 29 - July 2 2000; Stanford, CA. Edited by Langley P. Morgan Kaufmann Publishers, San Francisco; 2000:359-366.
- [18]Pearl J: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco, Morgan Kaufmann Publishers; 1988.
- [19]Liu H, D’Andrade P, Fulmer-Smentek S, Lorenzi P, Kohn KW, Weinstein JN, Pommier Y, Reinhold WC: mRNA and microRNA expression profiles of the nci-60 integrated with drug activities. Mol Cancer Ther 2010, 9(5):1080-1091.
- [20]Lin SM, Johnson K: Methods of Microarray Data Analysis II. Springer US, New York; 2002.
- [21]Drezner Z: Facility Location: a Survey of Applications and Methods. Springer US, New York; 1995.
- [22]Järvinen P, Rajala J, Sinervo H: Technical note - a branch-and-bound algorithm for seeking the P-Median. Oper Res 1972, 20(1):173-178.
- [23]Kaufman L, Rousseeuw PJ: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York; 1990.
- [24]Bradley PS, Mangasarian OL, Street WN: Clustering via concave minimization. In Proceedings of Advances in Neural Information Processing Systems: December 2–5, 1996; Denver, CO. Edited by Mozer MC, Jordan MI, Petsche T. MIT Press, Cambridge, MA; 1996:68-374.
- [25]Weiszfeld E: Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math J 1937, 43(2):355-386.
- [26]Wang P, Domeniconi C, Laskey KB: Nonparametric bayesian clustering ensembles. In Proceedings of the 2010 European conference on Machine learning and knowledge discovery in databases: Part III: 20–24 September 2010; Barcellona. Edited by Balcázar JL, Bonchi F, Gionis A, Sebag M. Springer-Verlag, Berlin; 2010:435-450.
- [27]Nguyen N, Caruana R: Consensus clusterings. In Proceedings of the 7th IEEE International Conference on Data Mining: 28–31 October 2007; Omaha, NE. Edited by Ramakrishnan N, Zaïane OR, Shi Y, Clifton CW, Wu X. IEEE Computer Society, Washington DC; 2007:607-612.
- [28]Mo Q, Wang S, Seshan VE, Olshen AB, Schultz N, Sander C, Powers RS, Ladanyi M, Shen R: Pattern discovery and cancer gene identification in integrated cancer genomic data. PNAS 2013, 110(11):4245-4250.
- [29]Rey M, Roth V: Copula mixture model for dependency-seeking clustering. In Proceedings of the 29th International Conference on Machine Learning: June 26-July 1 2012; Edinburgh. Edited by Langford J, Pineau J. Omnipress, Madison, WI; 2012:927-934.
- [30]Kirk P, Griffin JE, Savage RS, Ghahramani Z, Wild DL: Bayesian correlated clustering to integrate multiple datasets. Bioinformatics 2012, 28:3290-3297.
- [31]Rogers S, Girolami M, Kolch W, Waters KM, Liu T, Thrall B, Wiley HS: Investigating the correspondence between transcriptomic and proteomic expression profiles using coupled cluster models. Bioinformatics 2008, 24:2894-2900.
- [32]Korn EL, Troendle JF, McShane LM, Simon R: Controlling the number of false discoveries: application to high-dimensional genomic data. J Stat Plann Inference 2004, 124(2):379-398.
- [33]Staunton JE, Slonim DK, Coller HA, Tamayo P, Angelo MJ, Park J, Scherf U, Lee JK, Reinhold WO, Weinstein JN, Mesirov JP, Lander ES, Golub TR: Chemosensitivity prediction by transcriptional profiling. PNAS 2001, 98(19):10787-10792.
- [34]Langley P, Iba W, Thompson K: An analysis of Bayesian classifiers. In Proceedings of the 10th National Conference on Artificial Intelligence: July 12–16 1992; San Jose, CA. Edited by Swartout WR. AAAI Press, Palo Alto, CA; 1992:223-228.
- [35]Quinlan JR: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco, CA; 1993.
- [36]Aha DW, Kibler D, Albert MK: Instance-based learning algorithms. Mach Learn 1991, 6(1):37-66.
- [37]Vapnik V: Statistical Learning Theory. Wiley, New York; 1998.
- [38]Tsamardinos I, Borboudakis G, Christodoulou E, Røe OD: Chemosensitivity Prediction of Tumours Based on Expression, miRNA, and Proteomics Data. Int J Syst Biol Biomed Technol 2012, 1(2):1-19.
- [39][http://www.ncbi.nlm.nih.gov/gene/] webcite Entrez gene database. []
- [40]Maglott D, Ostell J, Pruitt KD, Tatusova T: Entrez gene: gene-centered information at NCBI. Nucleic Acids Res 2005, 33(suppl 1):54-58.
- [41]Nagaraju GPC, Sharma D: Anti-cancer role of SPARC, an inhibitor of adipogenesis. Cancer Treat Rev 2011, 37(7):559-566.
- [42]Clark CJ, Sage EH: A prototypic matricellular protein in the tumor microenvironment where there’s SPARC, there’s fire. J Cell Biochem 2009, 104(3):721-732.
- [43]Arnold SA, Brekken RA: SPARC: a matricellular regulator of tumorigenesis. J Cell Commun Signal 2009, 3(3–4):255-273.
- [44]Riederer BM: Microtubule-associated protein 1B, a growth-associated and phosphorylated scaffold protein. Brain Res Bull 2007, 71(6):541-558.
- [45]Morselli E, Galluzzi L, Kepp O, Vicencio JM, Criollo A, Maiuri MC, Kroemer G: Anti-and pro-tumor functions of autophagy. Biochim Biophys Acta 2009, 1793(9):1524-1532.
- [46]Edwards KM, Münger K: Depletion of physiological levels of the human TID1 protein renders cancer cell lines resistant to apoptosis mediated by multiple exogenous stimuli. Oncogene 2004, 23(52):8419-8431.
- [47]Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R: The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy. Mol Aspects Med 2010, 31(2):145-170.
- [48]Mikosz CA, Brickley DR, Sharkey MS, Moran TW, Conzen SD: Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgk-1. J Biol Chem 2001, 276(20):16649-16654.
- [49]Zhang L, Cui R, Cheng X, Du J: Antiapoptotic effect of serum and glucocorticoid-inducible protein kinase is mediated by novel mechanism activating IκB Kinas. Cancer Res 2005, 65(2):457-464.
- [50]Lee HJ, Chang JH, Kim YS, Kim SJ, Yang HK: Effect of ets-related transcription factor (ERT) on transforming growth factor (TGF)-beta type II receptor gene expression in human cancer cell lines. J Exp Clin Cancer Res 2003, 22(3):477-480.
- [51]Chen D, Shan J, Zhu WG, Qin J, Gu W: Transcription-independent ARF regulation in oncogenic stress-mediated p53 responses. Nature 2010, 464(7288):624-627.
- [52]Liggett W, Sidransky D: Role of the p16 tumor suppressor gene in cancer. J Clin Oncol 1998, 16(3):1197-1206.
- [53]Virani S, Colacino JA, Kim JH, Rozek LS: Cancer epigenetics: a brief review. ILAR J 2013, 53(3–4):359-369.
- [54]Parr C, Jiang WG: Hepatocyte growth factor activation inhibitors (HAI-1 and HAI-2) regulate HGF-induced invasion of human breast cancer cells. Int J Cancer 2006, 119(5):1176-1183.
- [55]Toler CR, Taylor DD, Gercel-Taylor C: Loss of communication in ovarian cancer. Am J Obstet Gynecol 2006, 194(5):e27-31.
- [56]Li Z, Zhou Z, Welch DR: Donahue HJ. Expressing connexin 43 in breast cancer cells reduces their metastasis to lungs. Clin Exp Metastasis 2008, 25(8):893-901.
- [57]Qin H, Shao Q, Curtis H, Galipeau J, Belliveau DJ, Wang T, Alaoui-Jamali MA, Laird DW: Retroviral delivery of connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap junctional intercellular communication. J Biol Chem 2002, 277(32):29132-29138.
- [58]Cheung M, Testa JR: Diverse mechanisms of AKT pathway activation in human malignancy. Current Cancer Drug Targets 2013, 13(3):234-244.
- [59]Munz M, Baeuerle PA, Gires O: The emerging role of EpCAM in cancer and stem cell signaling. Cancer Res 2009, 69(14):5627-5629.
- [60]Maetzel D, Denzel S, Mack B, Canis M, Went P, Benk M, Kieu C, Papior P, Baeuerle PA, Munz M, Gires O: Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol 2009, 11(2):162-171.
- [61]Antonacopoulou AG, Grivas PD, Skarlas L, Kalofonos M, Scopa CD: Kalofonos HP: POLR2F, ATP6V0A1 and PRNP expression in colorectal cancer: new molecules with prognostic significance? Anticancer Res 2008, 28(2B):1221-1227.
- [62]Zhang N, Zhong R, Perez-Pinera P, Herradon G, Ezquerra L, Wang ZY, Deuel TF: Identification of the angiogenesis signaling domain in pleiotrophin defines a mechanism of the angiogenic switch. Biochem Biophys Res Commun 2006, 343(2):653-658.
- [63]Li T, Feng Z, Jia S, Wang W, Du Z, Chen N, Chen Z: Daintain/AIF-1 promotes breast cancer cell migration by up-regulated TNF-α via activate p38 MAPK signaling pathway. Breast cancer Res Treatment 2012, 131(3):891-898.
- [64]Hu S, Delorme N, Liu Z, Liu T, Velasco-Gonzalez C, Garai J, Pullikuth A, Koochekpour S: Prosaposin down-modulation decreases metastatic prostate cancer cell adhesion, migration, and invasion. Mol Cancer2010, 9(30).
- [65]Kang SY, Halvorsen OJ, Gravdal K, Bhattacharya N, Lee JM, Liu NW, Johnston BT, Johnston AB, Haukaas SA, Aamodt K, Yoo S, Akslen LA, Watnick RS: Prosaposin inhibits tumor metastasis via paracrine and endocrine stimulation of stromal p53 and Tsp-1. PNAS 2009, 106(29):12115-12120.
- [66]Pan PW, Zhang Q, Bai F, Hou J, Bai G: Profiling and comparative analysis of glycoproteins in Hs578BST and Hs578T and investigation of prolyl 4-hydroxylase alpha polypeptide II expression and influence in breast cancer cells. Biochemistry 2012, 77(5):539-545.
- [67]Chang KP, Yu JS, Chien KY, Lee CW, Liang Y, Liao CT, Yen TC, Lee LY, Huang LL, Liu SC, Chang YS, Chi LM: Identification of PRDX4 and P4HA2 as metastasis-associated proteins in oral cavity squamous cell carcinoma by comparative tissue proteomics of microdissected specimens using iTRAQ technology. J Proteome Res 2011, 10(11):4935-4947.
- [68][http://www.microrna.org/] webcite microRNA.org - targets and expression. []
- [69]Betel D, Wilson M, Gabow A, Marks DS, Sander C: The microRNA.org resource: targets and expression. Nucleic Acids Res 2008, 36(Database issue):D149-D153.
- [70]Kolar M, Liu H: Marginal regression for multitask learning. In Proceedings of the International Conference on Artificial Intelligence and Statistics: April 21–23 2012; La Palma, Canary Islands. Edited by Lawrence ND, Girolami M. JMLR.org., Cambridge; 2012:647-655.
- [71]Evgeniou T, Micchelli CA, Pontil M, Shawe-Taylor J: Learning multiple tasks with kernel methods. J Mach Learn Res 2005, 6(4):615-637.
- [72][http://www.cs.waikato.ac.nz/ml/weka/] webcite WEKA data mining software. []
- [73]Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH: The WEKA data mining software: an update. ACM SIGKDD Explorations Newslett 2009, 11(1):10-18.
- [74][https://code.google.com/p/bnt/] webcite Bayesian network toolbox. []