期刊论文详细信息
Biotechnology for Biofuels
Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes
Chris R Somerville2  John E Dueber4  Stefan Bauer5  Jonas MS Andrich3  Ryan J Protzko1  J Philipp Benz5 
[1]Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
[2]Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
[3]present address: Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
[4]Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
[5]Energy Biosciences Institute, University of California Berkeley, Berkeley, CA, USA
关键词: L-galactonic acid;    Meso-galactaric acid;    Bioconversion;    Metabolic engineering;    Saccharomyces cerevisiae;    Sugar transport;    Neurospora crassa;    D-galacturonic acid;    Pectin;   
Others  :  793721
DOI  :  10.1186/1754-6834-7-20
 received in 2013-11-05, accepted in 2014-01-15,  发布年份 2014
PDF
【 摘 要 】

Background

Pectin-rich agricultural wastes potentially represent favorable feedstocks for the sustainable production of alternative energy and bio-products. Their efficient utilization requires the conversion of all major constituent sugars. The current inability of the popular fermentation host Saccharomyces cerevisiae to metabolize the major pectic monosaccharide D-galacturonic acid (D-GalA) significantly hampers these efforts. While it has been reasoned that the optimization of cellular D-GalA uptake will be critical for the engineering of D-GalA utilization in yeast, no dedicated eukaryotic transport protein has been biochemically described. Here we report for the first time such a eukaryotic D-GalA transporter and characterize its functionality in S. cerevisiae.

Results

We identified and characterized the D-GalA transporter GAT-1 out of a group of candidate genes obtained from co-expression analysis in N. crassa. The N. crassa Δgat-1 deletion strain is substantially affected in growth on pectic substrates, unable to take up D-GalA, and impaired in D-GalA-mediated signaling events. Moreover, expression of a gat-1 construct in yeast conferred the ability for strong high-affinity D-GalA accumulation rates, providing evidence for GAT-1 being a bona fide D-GalA transport protein. By recombinantly co-expressing D-galacturonate reductase or uronate dehydrogenase in yeast we furthermore demonstrated a transporter-dependent conversion of D-GalA towards more reduced (L-galactonate) or oxidized (meso-galactaric acid) downstream products, respectively, over a broad concentration range.

Conclusions

By utilizing the novel D-GalA transporter GAT-1 in S. cerevisiae we successfully generated a transporter-dependent uptake and catalysis system for D-GalA into two products with high potential for utilization as platform chemicals. Our data thereby provide a considerable first step towards a more complete utilization of biomass for biofuel and value-added chemicals production.

【 授权许可】

   
2014 Benz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705054708671.pdf 1512KB PDF download
Figure 5. 87KB Image download
Figure 4. 55KB Image download
Figure 3. 52KB Image download
Figure 2. 144KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Doran JB, Cripe J, Sutton M, Foster B: Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol. Appl Biochem Biotechnol 2000, 84–86:141-152.
  • [2]Kennedy M, List D, Lu Y, Foo LY, Newman RH, Sims IM, Bain PJS, Hamilton B, Fenton G: Apple Pomace and Products Derived from Apple Pomace: Uses, Composition and Analysis. In Analysis of Plant Waste Materials. Edited by Linskens HF, Jackson JF. Berlin, Heidelberg: Springer; 1999:75-119.
  • [3]Rivas B, Torrado A, Torre P, Converti A, Dominguez JM: Submerged citric acid fermentation on orange peel autohydrolysate. J Agric Food Chem 2008, 56:2380-2387.
  • [4]Angel Siles Lopez J, Li Q, Thompson IP: Biorefinery of waste orange peel. Crit Rev Biotechnol 2010, 30:63-69.
  • [5]Grohmann K, Baldwin EA, Buslig BS: Production of ethanol from enzymatically hydrolyzed orange peel by the yeast Saccharomyces cerevisiae. Appl Biochem Biotechnol 1994, 45–46:315-327.
  • [6]Hang YD, Lee CY, Woodams EE, Cooley HJ: Production of alcohol from apple pomace. Appl Environ Microbiol 1981, 42:1128-1129.
  • [7]Rorick R, Nahar N, Pryor SW: Ethanol production from sugar beet pulp using escherichia coli KO11 and Saccharomyces cerevisiae. Biol Eng 2011, 3:199-209.
  • [8]Vendruscolo F, Albuquerque PM, Streit F, Esposito E, Ninow JL: Apple pomace: a versatile substrate for biotechnological applications. Crit Rev Biotechnol 2008, 28:1-12.
  • [9]Edwards MC, Doran-Peterson J: Pectin-rich biomass as feedstock for fuel ethanol production. Appl Microbiol Biotechnol 2012, 95:565-575.
  • [10]Xiao C, Anderson CT: Roles of pectin in biomass yield and processing for biofuels. Front Plant Sci 2013, 4:67.
  • [11]Atmodjo MA, Hao Z, Mohnen D: Evolving views of pectin biosynthesis. Annu Rev Plant Biol 2013, 64:747-779.
  • [12]Mohnen D: Pectin structure and biosynthesis. Curr Opin Plant Biol 2008, 11:266-277.
  • [13]Amorim HV, Lopes ML, de Castro Oliveira JV, Buckeridge MS, Goldman GH: Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 2011, 91:1267-1275.
  • [14]van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT: Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 2006, 90:391-418.
  • [15]Barnett JA, Payne RW, Yarrow D (Eds): A guide to identifying and classifying yeasts. Cambridge: Cambridge University Press; 1990.
  • [16]Huisjes EH, Luttik MA, Almering MJ, Bisschops MM, Dang DH, Kleerebezem M, Siezen R, van Maris AJ, Pronk JT: Toward pectin fermentation by Saccharomyces cerevisiae: expression of the first two steps of a bacterial pathway for D-galacturonate metabolism. J Biotechnol 2012, 162:303-310.
  • [17]Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik MA, Daran-Lapujade P, Vongsangnak W, Nielsen J, Heijne WHM, Klaassen P, Paddon CJ, Platt D, Kotter P, van Ham RC, Reinders MJT, Pronk JT, de Ridder D, Daran JM: De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 2012, 11:36. BioMed Central Full Text
  • [18]Huisjes EH, de Hulster E, van Dam JC, Pronk JT, van Maris AJ: Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose. Appl Environ Microbiol 2012, 78:5052-5059.
  • [19]Ashwell A, Wahba AJ, Hickman J: A new pathway of uronic acid metabolism. Biochim Biophys Acta 1958, 30:186-187.
  • [20]Ashwell G: Enzymes of glucuronic and galacturonic acid metabolism in bacteria. Method Enzymol 1962, 5:190-208.
  • [21]Hugouvieux-Cotte-Pattat N, Robert-Baudouy J: Hexuronate catabolism in Erwinia chrysanthemi. J Bacteriol 1987, 169:1223-1231.
  • [22]Kilgore WW, Starr MP: Catabolism of galacturonic and glucuronic acids by Erwinia carotovora. J Biol Chem 1959, 234:2227-2235.
  • [23]Hilditch S: Identification of the fungal catabolic D-galacturonate pathway. PhD thesis. University of Helsinki, Faculty of Biosciences, Department of Biological and Environmental Sciences, Division of Biochemistry; 2010.
  • [24]Hilditch S, Berghall S, Kalkkinen N, Penttila M, Richard P: The missing link in the fungal D-galacturonate pathway: identification of the L-threo-3-deoxy-hexulosonate aldolase. J Biol Chem 2007, 282:26195-26201.
  • [25]Martens-Uzunova E: Assessment of the Pectinolytic Network of Aspergillus niger by Functional Genomics - Insights from the Transcriptome. PhD thesis. Wageningen University, Laboratory of Microbiology; 2008.
  • [26]Martens-Uzunova ES, Schaap PJ: An evolutionary conserved d-galacturonic acid metabolic pathway operates across filamentous fungi capable of pectin degradation. Fungal Genet Biol 2008, 45:1449-1457.
  • [27]Zhang L: Pectin degradation by Botrytis cinerea: recognition of endo-polygalacturonases by an Arabidopsis receptor and utilization of D-galacturonic acid. PhD thesis. Wageningen University, Laboratory of Phytopathology; 2013.
  • [28]Zhang L, Thiewes H, van Kan JA: The D-galacturonic acid catabolic pathway in Botrytis cinerea. Fungal Genet Biol 2011, 48:990-997.
  • [29]Richard P, Hilditch S: D-galacturonic acid catabolism in microorganisms and its biotechnological relevance. Appl Microbiol Biotechnol 2009, 82:597-604.
  • [30]Huisjes E: Towards fermentation of galacturonic acid-containing feedstocks with Saccharomyces cerevisiae. PhD thesis. Delft University of Technology, Industrial Microbiology Section, Department of Biotechnology; 2013.
  • [31]Souffriau B, den Abt T, Thevelein JM: Evidence for rapid uptake of D-galacturonic acid in the yeast Saccharomyces cerevisiae by a channel-type transport system. FEBS Lett 2012, 586:2494-2499.
  • [32]Blot N, Berrier C, Hugouvieux-Cotte-Pattat N, Ghazi A, Condemine G: The oligogalacturonate-specific porin KdgM of Erwinia chrysanthemi belongs to a new porin family. J Biol Chem 2002, 277:7936-7944.
  • [33]Hugouvieux-Cotte-Pattat N, Blot N, Reverchon S: Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937. Mol Microbiol 2001, 41:1113-1123.
  • [34]Hugouvieux-Cotte-Pattat N, Reverchon S: Two transporters, TogT and TogMNAB, are responsible for oligogalacturonide uptake in Erwinia chrysanthemi 3937. Mol Microbiol 2001, 41:1125-1132.
  • [35]San Francisco MJ, Keenan RW: Uptake of galacturonic acid in Erwinia chrysanthemi EC16. J Bacteriol 1993, 175:4263-4265.
  • [36]Znameroski EA, Glass NL: Using a model filamentous fungus to unravel mechanisms of lignocellulose deconstruction. Biotechnol Biofuels 2013, 6:6. BioMed Central Full Text
  • [37]Benz JP, Chau BH, Zheng D, Bauer S, Glass NL, Somerville CR: A comparative systems analysis of polysaccharide-elicited responses in Neurospora crassa reveals carbon source-specific cellular adaptations. Mol Microbiol 2014, 91:275-99.
  • [38]Delmas S, Pullan ST, Gaddipati S, Kokolski M, Malla S, Blythe MJ, Ibbett R, Campbell M, Liddell S, Aboobaker A, Tucker GA, Archer DB: Uncovering the genome-wide transcriptional responses of the filamentous fungus Aspergillus niger to lignocellulose using RNA sequencing. Plos Genet 2012, 8:e1002875.
  • [39]Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, et al.: The genome sequence of the filamentous fungus Neurospora crassa. Nature 2003, 422:859-868.
  • [40]Tang X, Dong W, Griffith J, Nilsen R, Matthes A, Cheng KB, Reeves J, Schuttler HB, Case ME, Arnold J, Logan DA: Systems biology of the qa gene cluster in Neurospora crassa. Plos One 2011, 6:e20671.
  • [41]Whittington HA, Grant S, Roberts CF, Lamb H, Hawkins AR: Identification and isolation of a putative permease gene in the quinic acid utilization (QUT) gene cluster of Aspergillus nidulans. Curr Genet 1987, 12:135-139.
  • [42]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [43]Yoon SH, Moon TS, Iranpour P, Lanza AM, Prather KJ: Cloning and characterization of uronate dehydrogenases from Two pseudomonads and Agrobacterium tumefaciens strain C58. J Bacteriol 2009, 191:1565-1573.
  • [44]Enquist-Newman M, Faust AM, Bravo DD, Santos CN, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR, Peereboom L, Clark A, Martinez Y, Goldsmith J, Cho MY, Donohoue PD, Luo L, Lamberson B, Tamrakar P, Kim EJ, Villari JL, Gill A, Tripathi SA, Karamchedu P, Paredes CJ, Rajgarhia V, Kotlar HK, Bailey RB, Miller DJ, Ohler NL, et al.: Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 2014, 505:239-243.
  • [45]Kuivanen J, Mojzita D, Wang Y, Hilditch S, Penttila M, Richard P, Wiebe MG: Engineering filamentous fungi for conversion of D-galacturonic acid to L-galactonic acid. Appl Environ Microbiol 2012, 78:8676-8683.
  • [46]Zhang L, Hua C, Stassen JHM, Chatterjee S, Cornelissen M, van Kan JAL: Genome-wide analysis of pectate-induced gene expression in Botrytis cinerea: identification and functional analysis of putative D-galacturonate transporters. Fungal Genet Biol 2013. doi:10.1016/j.fgb.2013.10.002
  • [47]Kiely DE, Chen L, Lin TH: Synthetic polyhydroxypolyamides from galactaric, xylaric, D-glucaric, and D-mannaric acids and alkylenediamine monomers - Some comparisons. J Polym Sci Pol Chem 2000, 38:594-603.
  • [48]Mojzita D, Wiebe M, Hilditch S, Boer H, Penttila M, Richard P: Metabolic engineering of fungal strains for conversion of D-galacturonate to meso-galactarate. Appl Environ Microbiol 2010, 76:169-175.
  • [49]Moon TS, Yoon SH, Lanza AM, Roy-Mayhew JD, Prather KLJ: Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl Environ Microb 2009, 75:589-595.
  • [50]Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S: Top Value Added Chemicals From Biomass. Volume 1 - Results of Screening for Potential Candidates From Sugars and Synthesis Gas. Department of Energy Report; 2004:1-76.
  • [51]Csiba M, Cleophax J, Petit S, Gero SD: An expedient and practical 3-step synthesis of vitamin-C from a by-product of the sugar-industry - the L-galactono-1,4-lactone pathway. J Org Chem 1993, 58:7281-7282.
  • [52]Roland JF, Cayle T, Dinwoodie RC, Mehnert DW: Fermentation production of ascorbic acid from L-galactonic substrate. 1983. US Patent 4,595,659
  • [53]Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, Valpuesta V: Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol 2003, 21:177-181.
  • [54]Chang YF, Feingold DS: D-Glucaric acid and galactaric acid catabolism by Agrobacterium tumefaciens. J Bacteriol 1970, 102:85.
  • [55]Hamada S, Seike Y, Tanimori S, Sakamoto T, Kishida M: Characterization of D-galacturonate reductase purified from the psychrophilic yeast species Cryptococcus diffluens. J Biosci Bioeng 2011, 111:518-521.
  • [56]Vogel HJ: A convenient growth medium for Neurospora (medium N). Microbial Genetics Bulletin 1956, 13:42.
  • [57]Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 1998, 14:115-132.
  • [58]Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH: Cellodextrin transport in yeast for improved biofuel production. Science 2010, 330:84-86.
  • [59]Lee ME, Aswani A, Han AS, Tomlin CJ, Dueber JE: Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res 2013, 41:10668-10678.
  • [60]Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F: Colorimetric method for determination of sugars and related substances. Anal Chem 1956, 28:350-356.
  • [61]Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O: Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008, 36:W465-W469.
  • [62]Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL: Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci USA 2012, 109:7397-7402.
  • [63]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
  • [64]Roberts A, Pimentel H, Trapnell C, Pachter L: Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 2011, 27:2325-2329.
  • [65]Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L: Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 2011, 12:R22. BioMed Central Full Text
  • [66]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28:511-515.
  • [67]Sant’Ana GD, Paes LD, Paiva AFV, Fietto LG, Totola AH, Tropia MJM, Silveira-Lemos D, Lucas C, Fietto JLR, Brandao RL, Castro ID: Protective effect of ions against cell death induced by acid stress in Saccharomyces. Fems Yeast Res 2009, 9:701-712.
  文献评价指标  
  下载次数:19次 浏览次数:13次