期刊论文详细信息
BMC Bioinformatics
Accurate genome relative abundance estimation for closely related species in a metagenomic sample
Michael B Sohn1  Lingling An2  Naruekamol Pookhao2  Qike Li1 
[1] Interdisciplinary Program in Statistics, University of Arizona, Tucson AZ 85721, USA
[2] Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson AZ 85721, USA
关键词: Closely related species;    Genomic similarity;    Alignment similarity;    Metagenomics;   
Others  :  1087550
DOI  :  10.1186/1471-2105-15-242
 received in 2014-01-17, accepted in 2014-07-07,  发布年份 2014
PDF
【 摘 要 】

Background

Metagenomics has a great potential to discover previously unattainable information about microbial communities. An important prerequisite for such discoveries is to accurately estimate the composition of microbial communities. Most of prevalent homology-based approaches utilize solely the results of an alignment tool such as BLAST, limiting their estimation accuracy to high ranks of the taxonomy tree.

Results

We developed a new homology-based approach called Taxonomic Analysis by Elimination and Correction (TAEC), which utilizes the similarity in the genomic sequence in addition to the result of an alignment tool. The proposed method is comprehensively tested on various simulated benchmark datasets of diverse complexity of microbial structure. Compared with other available methods designed for estimating taxonomic composition at a relatively low taxonomic rank, TAEC demonstrates greater accuracy in quantification of genomes in a given microbial sample. We also applied TAEC on two real metagenomic datasets, oral cavity dataset and Crohn’s disease dataset. Our results, while agreeing with previous findings at higher ranks of the taxonomy tree, provide accurate estimation of taxonomic compositions at the species/strain level, narrowing down which species/strains need more attention in the study of oral cavity and the Crohn’s disease.

Conclusions

By taking account of the similarity in the genomic sequence TAEC outperforms other available tools in estimating taxonomic composition at a very low rank, especially when closely related species/strains exist in a metagenomic sample.

【 授权许可】

   
2014 Sohn et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150117015730382.pdf 512KB PDF download
Figure 9. 60KB Image download
Figure 8. 64KB Image download
Figure 7. 31KB Image download
Figure 6. 51KB Image download
Figure 5. 66KB Image download
Figure 4. 42KB Image download
Figure 3. 56KB Image download
Figure 2. 15KB Image download
Figure 1. 66KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Teeling H, Glöckner FO: Current opportunities and challenges in microbial metagenome analysis - a bioinformatic perspective. Brief Bioinform 2012, 13(6):728-742.
  • [2]Thomas T, Gilbert J, Meyer F: Metagenomics - a guide from sampling to data analysis. Microb Inform Exp 2012., 2(3) [http://www.microbialinformaticsj.com/content/2/1/3 webcite]
  • [3]Dröge J, McHardy AC: Taxonomic binning of metagenome samples generated by next-generation sequencing technologies. Brief Bioinform 2012, 13(6):645-655.
  • [4]Mande SS, Mohammed MH, Ghosh TS: Classification of metagenomic sequences: methods and challenges. Brief Bioinform 2012, 13(6):669-681.
  • [5]Huson DH, Auch AF, Qi J, Schuster SC: Megan analysis of metagenomic data. Genome Res 2007, 17:377-386.
  • [6]Haque MM, Ghosh TS, Komanduri D, Mande SS: Sort-items: Sequence orthology based approach for improved taxonomic estimation of metagenomic sequences. Bioinformatics 2009, 25:1722-1730.
  • [7]Gerlach W, Stoye J: Taxonomic classification of metagenomic shotgun sequences with carma3. Nucleic Acids Res 2011, 39(14):91.
  • [8]Angly FE, Willner D, Edwards RA, Schmieder R, Vega-Thurber R, Antonopoulos DA, Barrott K, Cottrell MT, Desnues C, Dinsdale EA, Furlan M, Haynes M, Henn MR, Hu Y, Kirchman DL, McDole T, McPherson JD, Meyer F, Miller RM, Mundt E, Naviaux RK, Rodriguez-Mueller B, Stevens R, Wegley L, Zhang L, Zhu B, Rohwer F, Prieto-Davó A: The gaas metagenomic tool and its estimations of viral and microbial average genome size in four major biomes. PLoS Comput Biol 2009, 5(12):1000593.
  • [9]Xia LC, Cram JA, Chen T, Fuhrman JA, Sun F: Accurate genome relative abundance estimation based on shotgun metagenomic reads. Brief Bioinform 2011, 6(12):27992.
  • [10]Lindner MS, Renard BY: Metagenomic abundance estimation and diagnostic testing on species level. Nucleic Acids Res 2013, 41(1):10.
  • [11]Jiang H, An L, Lin SM, Feng G, Qiu Y: A statistical framework for accurate taxonomic assignment of metagenomic sequencing reads. PLoS ONE 2012, 7(10):46450.
  • [12]Langmead B, Salzberg SL: Fast gapped-read alignment with bowtie 2. Nat Methods 2012, 9:357-359.
  • [13]Efron B, Hastie T, Johnstone I, Tibshirani R: Least angle regression. Ann Stat 2004, 32:407-499.
  • [14]Dempster AP, Laird NM, Rubin DB: Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc 1977, 39(1):1-38.
  • [15]Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simón-Soro A, Pignatelli M, Mira A: The oral metagenome in health and disease. ISME 2012, 6:45-56.
  • [16]Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C: Dysfunction of the intestinal micro biome in inflammatory bowel disease and treatment. Genome Biol 2012, 13:79.
  • [17]The ncbi ftp site 2012. [ftp://ftp.ncbi.nih.gov/genomes/bacteria/ webcite]
  • [18]Efron B: Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 1981, 68(3):589-599.
  • [19]Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy AC, Rigoutsos I, Salamov A, Korzeniewski F, Land M, Lapidus A, Grigoriev I, Richardson P, Hugenholtz P, Kyrpides NC: Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat Methods 2007, 4:495-500.
  • [20]Richter DC, Ott F, Auch AF, Schmid R, Huson DH: Metasima sequencing simulator for genomics and metagenomics. PLoS ONE 2008, 3(10):3373.
  • [21]Liu B, Faller LL, Klitgord N, Mazumdar V, Ghodsi M, Sommer DD, Gibbons TR, Treangen TJ, Chang YC, Li S, Stine OC, Hasturk H, Kasif S, Pop M, Amar S, Segrè D: Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS ONE 2012, 7(6):37919.
  • [22]Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG: The human oral microbiome. J Bacteriol 2010, 192(19):5002-5017.
  • [23]Ricaurte J, Klein O, Labombardi V, Martinez V, Serpe A, Joy M: Rothia dentocariosa endocarditis complicated by multiple intracranial hemorrhages. Southern Med J 2001, 94(4):438-440.
  • [24]Tanaka S, Yoshida M, Murakami Y, Ogiwara T, Shoji M, Kobayashi S, Watanabe S, Machino M, Fujisawa S: The relationship of prevotella intermedia, prevotella nigrescens and prevotella melaninogenica in the supragingival plaque of children, caries and oral malodor. J Clin Pediatr Dent 2008, 32(3):195-200.
  • [25]Kononen E: Pigmented prevotella species in the periodontally healthy oral cavity. FEMS Immunol Med Microbiol 1993, 6(2-3):201-205.
  • [26]Medical dictionary 2013. [http://medical-dictionary.thefreedictionary.com/prevotella+denticola webcite]
  • [27]Eribe E, Olsen I: Leptotrichia species in human infections. Anaerobe 2008, 14(3):131-137.
  • [28]Matera G, Muto V, Vinci M, Zicca E, Abdollahi-Roodsaz S, van de Veerdonk FL, Kullberg BJ, Liberto MC, van der Meer JW, Netea MG, Joosten LA, Focèă A: Receptor recognition of and immune intracellular pathways for veillonella parvula lipopolysaccharide. Clin Vaccine Immunol 2009, 16(12):1804-1809.
  • [29]Gonalves L, Fermiano D, Feres M, Figueiredo L, Teles F, Mayer M, Faveri M: Levels of selenomonas species in generalized aggressive periodontitis. J Periodontal Res 2012, 47(6):711-718.
  • [30]Ishihara K: Virulence factors of treponema denticola. Periodontology 2000 2010, 54:117-135.
  • [31]Van Hoogmoed C, Geertsema-Doornbusch G, Teughels W, Quirynen M, Busscher H, der Mei HC V: Reduction of periodontal pathogens adhesion by antagonistic strains. Oral Microbiol Immunol 2008, 23(1):43-48.
  • [32]Avita-Campos M, Simionato M, Gaetti-Jardim E: Prevotella. In Molecular Detection of Human Bacterial Pathogens. Edited by Liu D. CRC Press, Taylor & Francis Group; 2011:585-600.
  • [33]Ngom-Bru C, Barretto C: Gut microbiota: methodological aspects to describe taxonomy and functionality. Brief Bioinform 2012, 13(6):747-750.
  • [34]Collison M, Hirt RP, Wipat A, Nakjang S, Sanseau P, Brown JR: Data mining the human gut microbiota for therapeutic targets. Brief Bioinform 2011, 13(6):751-768.
  • [35]Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA: Diversity of the human intestinal microbial flora. Science 2005, 308:1635-1638.
  • [36]Sokol H, Seksik P: The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Curr Opin Gastroenterol 2010, 26:327-331.
  • [37]Dubourg G, Lagier J, Armougom F, Robert C, Audoly G, Papazian L, Raoult D: High-level colonisation of the human gut by verrucomicrobia following broad-spectrum antibiotic treatment. Int J Antimicrob Agents 2013, 41:149-155.
  • [38]Thota V, Dacha S, Natarajan A, Nerad J: Eggerthella lenta bacteremia in a crohn’s disease patient after ileocecal resection. Future Microbiol 2011, 6:595-597.
  • [39]Sartor R: Microbial influences in inflammatory bowel diseases. Gastroenterology 2008, 134:577-594.
  • [40]Liu Y, van Kruiningen H, West A, Cartun R, Cortot A, Colombel J: Immunocytochemical evidence of listeria, escherichia coli, and streptococcus antigens in crohn’s disease. Future Microbiol 2011, 6:595-597.
  • [41]Pérez-Brocal V, García-López R, Vázquez-Castellanos J, Nos P, Beltrán B, Latorre A, Moya A: Study of the viral and microbial communities associated with crohn’s disease: a metagenomic approach. Clin Transl Gastroenterol 2013, 4:36.
  • [42]Man S, Kaakoush N, Mitchell H: The role of bacteria and pattern-recognition receptors in crohn’s disease. Nat Rev Gastroenterol Hepatol 2011, 8:152-168.
  • [43]Rehman A, Lepage P, Nolte A, Hellmig S, Schreiber S, Ott S: Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. J Med Microbiol 2010, 59:1114-1122.
  • [44]Frank D, Amand A, Feldman R, Boedeker E, Harpaz N, Pace N: Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 2007, 104:13780-13785.
  文献评价指标  
  下载次数:75次 浏览次数:3次