期刊论文详细信息
BioData Mining
A novel biclustering algorithm of binary microarray data: BiBinCons and BiBinAlter
Haifa Ben Saber2  Mourad Elloumi1 
[1] Latice laboratory, Ensit, Tunis Université tunis el manar, Tunis, Tunisia
[2] Latice laboratory, ENSIT, Tunis Time université, Tunis, Tunisia
关键词: Microarray data analysis;    Evaluation function;    Algorithm;    Biclustering;   
Others  :  1234627
DOI  :  10.1186/s13040-015-0070-4
 received in 2015-01-04, accepted in 2015-11-08,  发布年份 2015
【 摘 要 】

The biclustering of microarray data has been the subject of a large research. No one of the existing biclustering algorithms is perfect. The construction of biologically significant groups of biclusters for large microarray data is still a problem that requires a continuous work. Biological validation of biclusters of microarray data is one of the most important open issues. So far, there are no general guidelines in the literature on how to validate biologically extracted biclusters. In this paper, we develop two biclustering algorithms of binary microarray data, adopting the Iterative Row and Column Clustering Combination (IRCCC) approach, called BiBinCons and BiBinAlter. However, the BiBinAlter algorithm is an improvement of BiBinCons. On the other hand, BiBinAlter differs from BiBinCons by the use of the EvalStab and IndHomog evaluation functions in addition to the CroBin one (Bioinformatics 20:1993–2003, 2004). BiBinAlter can extracts biclusters of good quality with better p-values.

【 授权许可】

   
2015 Ben saber and Elloumi.

【 参考文献 】
  • [1]Govaert G.La classification croisee. Modulad. 1983.
  • [2]Law NF, Siu WC, Cheng KO, Alan WC. Identification of coherent patterns in gene expression data using an efficient biclustering algorithm and parallel coordinate visualization. BMC Bioinformatics. 2008.
  • [3]Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 2006, 22:1122-29.
  • [4]Ihmels J, Bergmann S, Barkai N.: Defining transcription modules using large-scale gene expression data. Bioinformatics 2004, 20(13):1993-2003.
  • [5]Benny C, Richard K, Amir BD, Yakhini Z: Discovering local structure in gene expression data: The order-preserving submatrix problem. In Proceedings of the Sixth Annual International Conference on Computational Biology, RECOMB ’02. ACM, New York, NY, USA; 2002.
  • [6]Santamaria R, Khamiakova T, Sill M, Theron R, Quintales L, Kaiser S, et al.biclust: Bicluster algorithms. R package. 2011.
  文献评价指标  
  下载次数:0次 浏览次数:2次