期刊论文详细信息
BMC Bioinformatics
Profile-based short linear protein motif discovery
Niall J Haslam1  Denis C Shields1 
[1] School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
关键词: SLiMs;    Mini-motifs;    Short linear motifs;    Peptide binding;    Motif discovery;    Protein-protein interactions;   
Others  :  1088266
DOI  :  10.1186/1471-2105-13-104
 received in 2011-12-14, accepted in 2012-04-04,  发布年份 2012
PDF
【 摘 要 】

Background

Short linear protein motifs are attracting increasing attention as functionally independent sites, typically 3–10 amino acids in length that are enriched in disordered regions of proteins. Multiple methods have recently been proposed to discover over-represented motifs within a set of proteins based on simple regular expressions. Here, we extend these approaches to profile-based methods, which provide a richer motif representation.

Results

The profile motif discovery method MEME performed relatively poorly for motifs in disordered regions of proteins. However, when we applied evolutionary weighting to account for redundancy amongst homologous proteins, and masked out poorly conserved regions of disordered proteins, the performance of MEME is equivalent to that of regular expression methods. However, the two approaches returned different subsets within both a benchmark dataset, and a more realistic discovery dataset.

Conclusions

Profile-based motif discovery methods complement regular expression based methods. Whilst profile-based methods are computationally more intensive, they are likely to discover motifs currently overlooked by regular expression methods.

【 授权许可】

   
2012 Haslam and Shields; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150117092218203.pdf 324KB PDF download
【 参考文献 】
  • [1]Neduva V, Russell RB: Linear motifs: evolutionary interaction switches. FEBS Lett 2005, 579:3342-3345.
  • [2]Letunic I, Doerks T, Bork P: SMART 6: recent updates and new developments. Nucleic Acids Res 2009, 37:D229-D232.
  • [3]Dinkel H, Michael S, Weatheritt RJ, Davey NE, Van Roey K, Altenberg B, Toedt G, Uyar B, Seiler M, Budd A, et al.: ELM–the database of eukaryotic linear motifs. Nucleic Acids Res 2012, 40:D242-251.
  • [4]Miller MLL, Jensen LJJ, Diella F, Jørgensen C, Tinti M, Li L, Hsiung M, Parker SA, Bordeaux J, Sicheritz-Ponten T, et al.: Linear motif atlas for phosphorylation-dependent signaling. Sci Signal 2008, 1:ra2.
  • [5]Gibson TJ: Cell regulation: determined to signal discrete cooperation. Trends Biochem Sci 2009, 34:471-482.
  • [6]Rajasekaran S, Balla S, Gradie P, Gryk MRR, Kadaveru K, Kundeti V, Maciejewski MWW, Mi T, Rubino N, Vyas J, Schiller MRR: Minimotif miner 2nd release: a database and web system for motif search. Nucleic Acids Res 2008.
  • [7]Dinkel H, Chica C, Via A, Gould CM, Jensen LJ, Gibson TJ, Diella F: Phospho.ELM: a database of phosphorylation sites--update 2011. Nucleic Acids Res 2010, 39:D261-D267.
  • [8]Gnad F, Ren S, Cox J, Olsen JV, Macek B, Oroshi M, Mann M: PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 2007, 8(11):R250. BioMed Central Full Text
  • [9]Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT: Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 2004, 337:635-645.
  • [10]Gould CM, Diella F, Via A, Puntervoll P, Gemünd C, Chabanis-Davidson S, Michael S, Sayadi A, Bryne JC, Chica C, et al.: ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res 2010, 38:D167-180.
  • [11]Via A, Gould C, Gemund C, Gibson T, Citterich MH: A structure filter for the Eukaryotic Linear Motif Resource. BMC Bioinforma 2009., 10
  • [12]Down TA, Bergman CM, Su J, Hubbard TJ: Large-scale discovery of promoter motifs in Drosophila melanogaster. PLoS Comput Biol 2007, 3:e7.
  • [13]Bailey TL: Discovering novel sequence motifs with MEME. Current protocols in bioinformatics/editoral board, Andreas D Baxevanis [et al] 2002. Chapter 2:Unit 2.4
  • [14]Neduva V, Russell RB: DILIMOT: discovery of linear motifs in proteins. Nucleic Acids Res 2006., 34
  • [15]Davey NE, Haslam NJ, Shields DC, Edwards RJ: SLiMFinder: a web server to find novel, significantly over-represented, short protein motifs. Nucleic Acids Res 2010, 1-6.
  • [16]Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS: MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009, 37:W202-208.
  • [17]Diella F, Haslam N, Chica C, Budd A, Michael S, Brown NP, Trave G, Gibson TJ: Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci 2008, 13:6580-6603.
  • [18]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14:1188-1190.
  • [19]Davey NE, Shields DC, Edwards RJ: Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery. Bioinformatics (Oxford, England) 2009, 25:443-450.
  • [20]Consortium TU: The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 2010, 38:D142-D148.
  • [21]Fuxreiter M, Tompa P, Simon I: Local structural disorder imparts plasticity on linear motifs. Bioinformatics (Oxford, England) 2007, 23:950-956.
  • [22]Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B, Altenberg B, Budd A, Diella F, Dinkel H, Gibson TJ: Attributes of short linear motifs. Mol Biosyst 2011, 8:268-281.
  • [23]Hubbard TJP, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, et al.: Ensembl 2009. Nucleic Acids Res 2009, 37:D690-D697.
  • [24]Edwards RJ, Davey NE, Shields DC: SLiMFinder: A Probabilistic Method for Identifying Over-Represented, Convergently Evolved, Short Linear Motifs in Proteins. PLoS One 2007, 2(10):e967.
  • [25]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 2004, 5:113. BioMed Central Full Text
  • [26]Davey NE, Edwards RJ, Shields DC: The SLiMDisc server: short, linear motif discovery in proteins. Nucleic Acids Res 2007, 35:W455-459.
  • [27]Dosztányi Z, Csizmok V, Tompa P, Simon I: IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics (Oxford, England) 2005, 21:3433-3434.
  • [28]Neduva V, Russell R: Linear motifs: evolutionary interaction switches. FEBS Lett 2005, 579:3342-3345.
  • [29]Gould CM, Diella F, Via A, Puntervoll P, Gemund C, Chabanis-Davidson S, Michael S, Sayadi A, Bryne JC, Chica C: Others: ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res 2010, 38:D167.
  • [30]Prasad TS, Kandasamy K, Pandey A: Human Protein Reference Database and Human Proteinpedia as discovery tools for systems biology. Methods Mol Biol 2009, 577:67-79.
  • [31]Laskowski RA, Swindells MB: LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 2011, 51:2778-2786.
  • [32]Fan J, Zhang Q, Tochio H, Li M, Zhang M: Structural basis of diverse sequence-dependent target recognition by the 8 kDa dynein light chain. J Mol Biol 2001, 306:97-108.
  • [33]Benison G, Karplus PA, Barbar E: The interplay of ligand binding and quaternary structure in the diverse interactions of dynein light chain LC8. J Mol Biol 2008, 384:954-966.
  • [34]Williams JC, Roulhac PL, Roy AG, Vallee RB, Fitzgerald MC, Hendrickson WA: Structural and thermodynamic characterization of a cytoplasmic dynein light chain-intermediate chain complex. Proc Natl Acad Sci U S A 2007, 104:10028-10033.
  • [35]Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [36]Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, et al.: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539.
  • [37]Doğruel M, Down Ta, Hubbard TJ: NestedMICA as an ab initio protein motif discovery tool. BMC Bioinforma 2008, 9:19. BioMed Central Full Text
  • [38]Finn RD, Clements J, Eddy SR: HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011, 39:W29-37.
  • [39]Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz H-R, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, Bateman A: The Pfam protein families database. Nucleic Acids Res 2008, 36:D281-D288.
  • [40]Davey NE, Haslam NJ, Shields DC, Edwards RJ: SLiMSearch 2.0 : biological context for short linear motifs in proteins. Nucleic Acids Res 2011. Webserver 1–5
  文献评价指标  
  下载次数:11次 浏览次数:19次