期刊论文详细信息
Biotechnology for Biofuels
Endoglucanases: insights into thermostability for biofuel applications
Ragothaman M Yennamalli2  Andrew J Rader1  Adam J Kenny4  Jeffrey D Wolt5  Taner Z Sen3 
[1] Present Address: State Farm Insurance, Indianapolis 46240, IN, USA
[2] Present Address: Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
[3] 1025 Crop Genome Informatics Lab, Iowa State University, Ames 50011, IA, USA
[4] Present Address: Brownells, Inc, Montezuma, IA 50171, USA
[5] Biosafety Institute for Genetically Modified Agricultural Products and Department of Agronomy, Iowa State University, Ames 50011, IA,USA
关键词: Mutant;    Cellulases;    Thermostability;    Endoglucanase;    Biofuel;   
Others  :  797895
DOI  :  10.1186/1754-6834-6-136
 received in 2013-06-04, accepted in 2013-09-24,  发布年份 2013
【 摘 要 】

Obtaining bioethanol from cellulosic biomass involves numerous steps, among which the enzymatic conversion of the polymer to individual sugar units has been a main focus of the biotechnology industry. Among the cellulases that break down the polymeric cellulose are endoglucanases that act synergistically for subsequent hydrolytic reactions. The endoglucanases that have garnered relatively more attention are those that can withstand high temperatures, i.e., are thermostable. Although our understanding of thermostability in endoglucanases is incomplete, some molecular features that are responsible for increased thermostability have been recently identified. This review focuses on the investigations of endoglucanases and their implications for biofuel applications.

【 授权许可】

   
2013 Yennamalli et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Fig. 8. 37KB Image download
Figure 2. 58KB Image download
Figure 1. 86KB Image download
【 图 表 】

Figure 1.

Figure 2.

Fig. 8.

【 参考文献 】
  • [1]Goddijn OJM, Pen J: Plants as bioreactors. Trends Biotechnol 1995, 13:379-387.
  • [2]Aspegren K, Mannonen L, Ritala A, Puupponenpimia R, Kurten U, Salmenkalliomarttila M, Kauppinen V, Teeri TH: Secretion of a heat-stable fungal beta-glucanase from transgenic, suspension-cultured barley cells. Mol Breeding 1995, 1:91-99.
  • [3]Herbers K, Wilke I, Sonnewald U: A thermostable xylanase from clostridium-thermocellum expressed at high-levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. Bio-Technol 1995, 13:63-66.
  • [4]Laliberte JF, Nicolas O, Durand S, Morosoli R: The xylanase introns from cryptococcus-albidus are accurately spliced in transgenic tobacco plants. Plant Mol Biol 1992, 18:447-451.
  • [5]Pen J, Molendijk L, Quax WJ, Sijmons PC, Vanooyen AJJ, Vandenelzen PJM, Rietveld K, Hoekema A: Production of active bacillus-licheniformis alpha-amylase in tobacco and its application in starch liquefaction. Bio-Technol 1992, 10:292-296.
  • [6]Pen J, Verwoerd TC, Vanparidon PA, Beudeker RF, Vandenelzen PJM, Geerse K, Vanderklis JD, Versteegh HAJ, Vanooyen AJJ, Hoekema A: Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio-Technol 1993, 11:811-814.
  • [7]Austin S, Bingham ET, Koegel RG, Mathews DE, Shahan MN, Straub RJ, Burgess RR: An overview of a feasibility study for the production of industrial enzymes in transgenic alfalfa. Ann Ny Acad Sci 1994, 721:234-244.
  • [8]Phillipson BA: Expression of a hybrid (1–3,1-4)-beta-glucanase in barley protoplasts. Plant Sci 1993, 91:195-206.
  • [9]Downing M, Eaton LM, Graham RL, Langholtz MH, Perlack RD, Turhollow AF Jr, Stokes B, Brandt CC: U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. Oak Ridge, Tennessee: Oak Ridge National Laboratory; 2011.
  • [10]Gan Q, Allen SJ, Taylor G: Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling. Process Biochem 2003, 38:1003-1018.
  • [11]Sticklen MB: Expediting the biofuels agenda via genetic manipulations of cellulosic bioenergy crops. Biofuel Bioprod Bior 2009, 3:448-455.
  • [12]Brunecky R, Selig MJ, Vinzant TB, Himmel ME, Lee D, Blaylock MJ, Decker SR: In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize. Biotechnology for biofuels 2011, 4:1. BioMed Central Full Text
  • [13]Chou HL, Dai Z, Hsieh CW, Ku MS: High level expression of Acidothermus cellulolyticus beta-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid. Biotechnology for biofuels 2011, 4:58. BioMed Central Full Text
  • [14]Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, Gholami M, Ardjmand M: Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 2013, 27:77-93.
  • [15]Kumar S, Tsai CJ, Nussinov R: Factors enhancing protein thermostability. Protein Eng 2000, 13:179-191.
  • [16]Sadeghi M, Naderi-Manesh H, Zarrabi M, Ranjbar B: Effective factors in thermostability of thermophilic proteins. Biophys Chem 2006, 119:256-270.
  • [17]Sandgren M, Gualfetti PJ, Shaw A, Gross LS, Saldajeno M, Day AG, Jones TA, Mitchinson C: Comparison of family 12 glycoside hydrolases and recruited substitutions important for thermal stability. Protein Sci 2003, 12:848-860.
  • [18]Berezovsky IN, Shakhnovich EI: Physics and evolution of thermophilic adaptation. Proc Natl Acad Sci USA 2005, 102:12742-12747.
  • [19]Ma BG, Goncearenco A, Berezovsky IN: Thermophilic adaptation of protein complexes inferred from proteomic homology modeling. Structure 2010, 18:819-828.
  • [20]Gromiha MM, Oobatake M, Sarai A: Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophys Chem 1999, 82:51-67.
  • [21]Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J: Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 2002, 5:53-63.
  • [22]Sarkanen KV, Ludwig CH: Lignins: occurrence, formation, structure and reactions. J Polym Sci B 1972, 10:228-230.
  • [23]Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lukas J: Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis; and enzymatic hydrolysis for corn stover. Golden, Colorado: National Renewable Energy Laboratory; 2002.
  • [24]Tabil L, Phani A, Mahdi K: Biofuel's engineering process technology. In Biomass feedstock pre-processing-Part 2: Densification. Edited by Santos Bernades MA. Croatia: InTech; 2011:439-464.
  • [25]Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, et al.: The path forward for biofuels and biomaterials. Science 2006, 311:484-489.
  • [26]Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 2005, 96:673-686.
  • [27]Sainz MB: Commercial cellulosic ethanol: the role of plant-expressed enzymes. In Vitro Cell Dev-Pl 2009, 45:314-329.
  • [28]Korkegian A, Black ME, Baker D, Stoddard BL: Computational thermostabilization of an enzyme. Science 2005, 308:857-860.
  • [29]Unsworth LD, van der Oost J, Koutsopoulos S: Hyperthermophilic enzymes–stability, activity and implementation strategies for high temperature applications. FEBS J 2007, 274:4044-4056.
  • [30]Turner P, Mamo G, Karlsson EN: Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 2007, 6:9. BioMed Central Full Text
  • [31]Leigh JA, Albers SV, Atomi H, Allers T: Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 2011, 35:577-608.
  • [32]Hood EE: From green plants to industrial enzymes. Enzyme Microb Technol 2002, 30:279-283.
  • [33]Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW: The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 2012, 109:1083-1087.
  • [34]Himmel ME, Adney WS, Baker JO, Elander R, McMillan JD, Nieves RA, Sheehan JJ, Thomas SR, Vinzant TB, Zhang M: Advanced bioethanol production technologies: a perspective. Acs Sym Ser 1997, 666:2-45.
  • [35]Park SH, Ransom C, Mei CS, Sabzikar R, Qi CF, Chundawat S, Dale B, Sticklen M: The quest for alternatives tomicrobial cellulase mix production: corn stover-produced heterologous multi-cellulases readily deconstruct lignocellulosic biomass into fermentable sugars. Chem Technol Biotechnol 2011, 86:633-641.
  • [36]Mei CS, Park SH, Sabzikar R, Qi CF, Ransom C, Sticklen M: Green tissue-specific production of a microbial endo-cellulase in maize (Zea mays L.) endoplasmic-reticulum and mitochondria converts cellulose into fermentable sugars. Chem Technol Biotechnol 2009, 84:689-695.
  • [37]D’Amico S, Marx JC, Gerday C, Feller G: Activity-stability relationships in extremophilic enzymes. J Biol Chem 2003, 278:7891-7896.
  • [38]Zavodszky P, Kardos J, Petsko GA, Svingor: Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci USA 1998, 95:7406-7411.
  • [39]Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL: Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci USA 2009, 106:11937-11942.
  • [40]Schweiker KL, Makhatadze GI: Protein stabilization by the rational design of surface charge-charge interactions. Methods Mol Biol 2009, 490:261-283.
  • [41]Lazar GA, Marshall SA, Plecs JJ, Mayo SL, Desjarlais JR: Designing proteins for therapeutic applications. Curr Opin Struct Biol 2003, 13:513-518.
  • [42]Schoemaker HE, Mink D, Wubbolts MG: Dispelling the myths–biocatalysis in industrial synthesis. Science 2003, 299:1694-1697.
  • [43]Sterner R, Liebl W: Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 2001, 36:39-106.
  • [44]Dahiyat BI: In silico design for protein stabilization. Curr Opin Biotechnol 1999, 10:387-390.
  • [45]Chakravarty S, Varadarajan R: Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study. Biochemistry 2002, 41:8152-8161.
  • [46]Hsiang-Chuan L, Yu-Chieh T, Bai-Cheng J, Tung-Sheng L: A Novel Prediction Algorithm of Thermostable Proteins by Using Hurst Exponent and Choquet Integral Regression Model. In Eighth International Conference on Intelligent Systems Design and Applications: 26–28 Nov. 2008; Kaohsiung. Edited by Pan JS, Abraham A, Chang CC. Kaohsiung: IEEE; 2008:147-152.
  • [47]Razvi A, Scholtz JM: Lessons in stability from thermophilic proteins. Protein Sci 2006, 15:1569-1578.
  • [48]Glyakina AV, Garbuzynskiy SO, Lobanov MY, Galzitskaya OV: Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms. Bioinformatics 2007, 23:2231-2238.
  • [49]Panasik N, Brenchley JE, Farber GK: Distributions of structural features contributing to thermostability in mesophilic and thermophilic alpha/beta barrel glycosyl hydrolases. Biochim Biophys Acta 2000, 1543:189-201.
  • [50]Mingardon F, Bagert JD, Maisonnier C, Trudeau DL, Arnold FH: Comparison of family 9 cellulases from mesophilic and thermophilic bacteria. Appl Environ Microbiol 2011, 77:1436-1442.
  • [51]Yennamalli RM, Rader AJ, Wolt JD, Sen TZ: Thermostability in endoglucanases is fold-specific. BMC Struct Biol 2011, 11:10. BioMed Central Full Text
  • [52]Liang C, Fioroni M, Rodriguez-Ropero F, Xue Y, Schwaneberg U, Ma Y: Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. J Biotechnol 2011, 154:46-53.
  • [53]Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK: Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol 2010, 70:1-55.
  • [54]Heinzelman P, Snow CD, Wu I, Nguyen C, Villalobos A, Govindarajan S, Minshull J, Arnold FH: A family of thermostable fungal cellulases created by structure-guided recombination. Proc Natl Acad Sci USA 2009, 106:5610-5615.
  • [55]Durrant JD, McCammon JA: Molecular dynamics simulations and drug discovery. BMC Biol 2011, 9:71. BioMed Central Full Text
  • [56]Bahar I, Lezon TR, Yang LW, Eyal E: Global dynamics of proteins: bridging between structure and function. Annu Rev Biophys 2010, 39:23-42.
  • [57]Yennamalli RM, Wolt JD, Sen TZ: Dynamics of endoglucanase catalytic domains: implications towards thermostability. J Biomol Struct Dyn 2011, 29:509-526.
  • [58]Heinzelman P, Snow CD, Smith MA, Yu X, Kannan A, Boulware K, Villalobos A, Govindarajan S, Minshull J, Arnold FH: SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability. J Biol Chem 2009, 284:26229-26233.
  • [59]Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF: Protein flexibility predictions using graph theory. Proteins 2001, 44:150-165.
  • [60]Plaxco KW, Simons KT, Baker D: Contact order, transition state placement and the refolding rates of single domain proteins. J Mol Biol 1998, 277:985-994.
  • [61]Rader AJ, Yennamalli RM, Harter AK, Sen TZ: A rigid network of long-range contacts increases thermostability in a mutant endoglucanase. J Biomol Struct Dyn 2012, 30:628-637.
  • [62]Nieves R, Chou Y-C, Himmel M, Thomas S: Quantitation ofAcidothermus cellulolyticus E1 endoglucanase andThermomonospora fusca E3 exoglucanase using enzyme-linked immunosorbent assay (ELISA). Appl Biochem Biotechnol 1995, 51–52:211-223.
  • [63]Lindenmuth BE, McDonald KA: Production and characterization of Acidothermus cellulolyticus endoglucanase in Pichia pastoris. Protein Expr Purif 2011, 77:153-158.
  • [64]Ziegelhoffer T, Raasch J, Austin-Phillips S: Dramatic effects of truncation and sub-cellular targeting on the accumulation of recombinant microbial cellulase in tobacco. Mol Breeding 2001, 8:147-158.
  • [65]Dai Z, Hooker BS, Anderson DB, Thomas SR: Expression of Acidothermus cellulolyticus endoglucanase E1 in transgenic tobacco: biochemical characteristics and physiological effects. Transgenic Res 2000, 9:43-54.
  • [66]Dai Z, Hooker BS, Quesenberry RD, Thomas SR: Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translational modification. Transgenic Res 2005, 14:627-643.
  • [67]Teymouri F, Alizadeh H, Laureano-Perez L, Dale B, Sticklen M: Effects of ammonia fiber explosion treatment on activity of endoglucanase from Acidothermus cellulolyticus in transgenic plant. Appl Biochem Biotechnol 2004, 113–116:1183-1191.
  • [68]Ziegelhoffer T, Raasch JA, Austin-Phillips S: Expression of Acidothermus cellulolyticus E1 endo-beta-1,4-glucanase catalytic domain in transplastomic tobacco. Plant Biotechnol J 2009, 7:527-536.
  • [69]Biswas GCG, Ransom C, Sticklen M: Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize plants. Plant Sci 2006, 171:617-623.
  • [70]Park S-H, Ransom C, Mei C, Sabzikar R, Qi C, Chundawat S, Dale B, Sticklen M: The quest for alternatives to microbial cellulase mix production: corn stover-produced heterologous multi-cellulases readily deconstruct lignocellulosic biomass into fermentable sugars. J Chem Tech Biotechnol 2011, 86:633-641.
  • [71]Ransom C, Balan V, Biswas G, Dale B, Crockett E, Sticklen M: Heterologous Acidothermus cellulolyticus 1,4-beta-endoglucanase E1 produced within the corn biomass converts corn stover into glucose. Appl Biochem Biotechnol 2007, 137:207-219.
  • [72]Ziegler M, Thomas S, Danna K: Accumulation of a thermostable endo-1,4-β-D-glucanase in the apoplast of Arabidopsis thaliana leaves. Mol Breeding 2000, 6:37-46.
  • [73]Dai Z, Hooker B, Anderson D, Thomas S: Improved plant-based production of E1 endoglucanase using potato: expression optimization and tissue targeting. Mol Breeding 2000, 6:277-285.
  • [74]Oraby H, Venkatesh B, Dale B, Ahmad R, Ransom C, Oehmke J, Sticklen M: Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic research 2007, 16:739-749.
  • [75]Sun Y, Cheng JJ, Himmel ME, Skory CD, Adney WS, Thomas SR, Tisserat B, Nishimura Y, Yamamoto YT: Expression and characterization of Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed Lemna minor 8627. Bioresour Technol 2007, 98:2866-2872.
  • [76]Walker LP, Wilson DB: Enzymatic hydrolysis of cellulose: an overview. Bioresour Technol 1991, 36:3-14.
  文献评价指标  
  下载次数:17次 浏览次数:13次