Biotechnology for Biofuels | |
Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation | |
Daniel González-Ramos1  Marcel van den Broek1  Antonius JA van Maris1  Jack T Pronk2  Jean-Marc G Daran2  | |
[1] Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, Delft 2600 GA, The Netherlands | |
[2] Platform for Green Synthetic Biology, P.O. Box 5057, Delft 2600 GA, The Netherlands | |
关键词: Multivesicular bodies; Proteasome; Whole genome sequencing; Deletion collection screening; Evolutionary engineering; Butanol tolerance; Saccharomyces cerevisiae; | |
Others : 798108 DOI : 10.1186/1754-6834-6-48 |
|
received in 2013-01-18, accepted in 2013-03-22, 发布年份 2013 | |
【 摘 要 】
Background
n-Butanol and isobutanol produced from biomass-derived sugars are promising renewable transport fuels and solvents. Saccharomyces cerevisiae has been engineered for butanol production, but its high butanol sensitivity poses an upper limit to product titers that can be reached by further pathway engineering. A better understanding of the molecular basis of butanol stress and tolerance of S. cerevisiae is important for achieving improved tolerance.
Results
By combining a screening of the haploid S. cerevisiae knock-out library, gene overexpression, and genome analysis of evolutionary engineered n-butanol-tolerant strains, we established that protein degradation plays an essential role in tolerance. Strains deleted in genes involved in the ubiquitin-proteasome system and in vacuolar degradation of damaged proteins showed hypersensitivity to n-butanol. Overexpression of YLR224W, encoding the subunit responsible for the recognition of damaged proteins of an ubiquitin ligase complex, resulted in a strain with a higher n-butanol tolerance. Two independently evolved n-butanol-tolerant strains carried different mutations in both RPN4 and RTG1, which encode transcription factors involved in the expression of proteasome and peroxisomal genes, respectively. Introduction of these mutated alleles in the reference strain increased butanol tolerance, confirming their relevance in the higher tolerance phenotype. The evolved strains, in addition to n-butanol, were also more tolerant to 2-butanol, isobutanol and 1-propanol, indicating a common molecular basis for sensitivity and tolerance to C3 and C4 alcohols.
Conclusions
This study shows that maintenance of protein integrity plays an essential role in butanol tolerance and demonstrates new promising targets to engineer S. cerevisiae for improved tolerance.
【 授权许可】
2013 González-Ramos et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140706101204715.pdf | 1037KB | download | |
Figure 10. | 98KB | Image | download |
Figure 9. | 54KB | Image | download |
Figure 8. | 94KB | Image | download |
Figure 7. | 64KB | Image | download |
Figure 6. | 64KB | Image | download |
Figure 5. | 45KB | Image | download |
Figure 4. | 119KB | Image | download |
Figure 3. | 46KB | Image | download |
Figure 2. | 44KB | Image | download |
Figure 1. | 56KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
【 参考文献 】
- [1]Durre P: Biobutanol: an attractive biofuel. Biotechnol J 2007, 2:1525-1534.
- [2]Fischer CR, Klein-Marcuschamer D, Stephanopoulos G: Selection and optimization of microbial hosts for biofuels production. Metab Eng 2008, 10:295-304.
- [3]Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS: Fermentative butanol production by Clostridia. Biotechnol Bioeng 2008, 101:209-228.
- [4]Jones DT, Woods DR: Acetone-butanol fermentation revisited. Microbiol Rev 1986, 50:484-524.
- [5]Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, He DZ: Problems with the microbial production of butanol. J Ind Microbiol Biotechnol 2009, 36:1127-1138.
- [6]Durre P: Fermentative production of butanol–the academic perspective. Curr Opin Biotechnol 2011, 22:331-336.
- [7]Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H: Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 2008, 77:1305-1316.
- [8]Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC: Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 2008, 10:305-311.
- [9]Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC: Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 2011, 77:2905-2915.
- [10]Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KL: Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 2009, 11:262-273.
- [11]Berezina OV, Zakharova NV, Brandt A, Yarotsky SV, Schwarz WH, Zverlov VV: Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 2010, 87:635-646.
- [12]Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD: Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 2008, 7-36. BioMed Central Full Text
- [13]Guymon JF, Ingraham JL, Crowell EA: The formation of n-propyl alcohol by Saccharomyces cerevisiae. Arch Biochem Biophys 1961, 95:163-168.
- [14]Ingraham JL, Guymon JF, Crowell EA: The pathway of formation of n-butyl and n-amyl alcohols by a mutant strain of Saccharomyces cerevisiae. Arch Biochem Biophys 1961, 95:169-175.
- [15]Romagnoli G, Luttik MA, Kotter P, Pronk JT, Daran JM: Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae. Appl Environ Microbiol 2012, 78:7538-7548.
- [16]Knoshaug EP, Zhang M: Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 2009, 153:13-20.
- [17]Liu S, Qureshi N: How microbes tolerate ethanol and butanol. N Biotechnol 2009, 26:117-121.
- [18]Vollherbst-Schneck K, Sands JA, Montenecourt BS: Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 1984, 47:193-194.
- [19]Sardessai Y, Bhosle S: Tolerance of bacteria to organic solvents. Res Microbiol 2002, 153:263-268.
- [20]Bowles LK, Ellefson WL: Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 1985, 50:1165-1170.
- [21]Ingram LO: Microbial tolerance to alcohols: role of the cell membrane. Trends Biotechnol 1986, 4:40-44.
- [22]Ennis BM, Marshall CT, Maddox IS, Paterson AHJ: Continuous product recovery by in-situ gas stripping/condensation during solvent production from whey permeate using Clostridium acetobutylicum. Biotechnol Lett 1986, 8:725-730.
- [23]Reyes LH, Almario MP, Kao KC: Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS One 2011, 6:e17678.
- [24]Atsumi S, Wu TY, Machado IM, Huang WC, Chen PY, Pellegrini M, Liao JC: Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 2010, 6:449.
- [25]Zingaro KA, Papoutsakis TE: GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng 2012, 15:196-205.
- [26]Casey GP, Ingledew WM: Ethanol tolerance in yeasts. Crit Rev Microbiol 1986, 13:219-280.
- [27]de Lucena RM, Elsztein C, Simoes DA, de Morais MAJ: Participation of CWI, HOG and Calcineurin pathways in the tolerance of Saccharomyces cerevisiae to low pH by inorganic acid. J Appl Microbiol 2012, 113:629-640.
- [28]van Dyk TK: New recombinant yeast cell useful for producing butanol, comprises at least one genetic modification that reduces pleiotropic drug resistant 5 phenotype activity. 2010. WO2010099524-A1
- [29]Bramucci MG, Larossa RA, Smulski DR: New recombinant yeast cell useful for producing 1-butanol, 2-butanol and isobutanol, comprises butanol biosynthetic pathway and genetic modification increasing cell wall integrity pathway activity. 2010, US2010167364-A1.
- [30]Bramucci MG, Larossa RA, Smulski DR: New recombinant yeast cell useful for producing 1-butanol, 2-butanol and isobutanol, comprises butanol biosynthetic pathway and genetic modification increasing activity of high osmolarity/glycerol response pathway. 2010, US2010167365-A1.
- [31]Bramucci MG, Larossa RA, Singh M: New recombinant yeast cell useful for producing 1-butanol, 2-butanol and isobutanol, comprises butanol biosynthetic pathway and genetic modification which increases activity of nitrogen starvation-induced filamentous growth response. 2010, US2010167363-A1.
- [32]Larossa RA: New recombinant yeast host cell comprises a genetic modification which reduces the response in the general control response to amino acid starvation, useful for producing butanol. 2009, US2009280546-A1.
- [33]Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El BM, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M’Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999, 285:901-906.
- [34]Hazelwood LA, Walsh MC, Pronk JT, Daran JM: Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to hop iso-alpha-acids. Appl Environ Microbiol 2010, 76:318-328.
- [35]Oud B, van Maris AJ, Daran JM, Pronk JT: Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 2012, 12:183-196.
- [36]Dowell RD, Ryan O, Jansen A, Cheung D, Agarwala S, Danford T, Bernstein DA, Rolfe PA, Heisler LE, Chin B, Nislow C, Giaever G, Phillips PC, Fink GR, Gifford DK, Boone C: Genotype to phenotype: a complex problem. Science 2010, 328:469-469.
- [37]Kus BM, Caldon CE, Andorn-Broza R, Edwards AM: Functional interaction of 13 yeast SCF complexes with a set of yeast E2 enzymes in vitro. Proteins 2004, 54:455-467.
- [38]Hwang GW, Ishida Y, Naganuma A: Identification of F-box proteins that are involved in resistance to methylmercury in Saccharomyces cerevisiae. FEBS Lett 2006, 580:6813-6818.
- [39]Sauer U: Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 2001, 73:129-169.
- [40]de Kok S, Nijkamp JF, Oud B, Roque FC, de RD, Daran JM, Pronk JT, van Maris AJ: Laboratory evolution of new lactate transporter genes in a jen1Delta mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis. FEMS Yeast Res 2012, 12:359-374.
- [41]Hong KK, Nielsen J: Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 2012, 69:2671-2690.
- [42]Koppram R, Albers E, Olsson L: Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels 2012, 5:32. BioMed Central Full Text
- [43]Nijkamp JF, van den Broek M, Datema E, de KS, Bosman L, Luttik MA, Daran-Lapujade P, Vongsangnak W, Nielsen J, Heijne WH, Klaassen P, Paddon CJ, Platt D, Kotter P, van Ham RC, Reinders MJ, Pronk JT, de RD, Daran JM: De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 2012, 11:36. BioMed Central Full Text
- [44]Emori Y, Tsukahara T, Kawasaki H, Ishiura S, Sugita H, Suzuki K: Molecular cloning and functional analysis of three subunits of yeast proteasome. Mol Cell Biol 1991, 11:344-353.
- [45]Hochstrasser M: Ubiquitin-dependent protein degradation. Annu Rev Genet 1996, 30:405-439.
- [46]Maurizi MR: Proteasome assembly: biting the hand. Curr Biol 1998, 8:R453-R456.
- [47]Ramos PC, Hockendorff J, Johnson ES, Varshavsky A, Dohmen RJ: Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 1998, 92:489-499.
- [48]Rothman JH, Howald I, Stevens TH: Characterization of genes required for protein sorting and vacuolar function in the yeast Saccharomyces cerevisiae. EMBO J 1989, 8:2057-2065.
- [49]Babst M, Odorizzi G, Estepa EJ, Emr SD: Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 2000, 1:248-258.
- [50]Katzmann DJ, Babst M, Emr SD: Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex. ESCRT-I. Cell 2001, 106:145-155.
- [51]Babst M, Katzmann DJ, Snyder WB, Wendland B, Emr SD: Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell 2002, 3:283-289.
- [52]Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD: Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 2002, 3:271-282.
- [53]Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD: Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 1993, 260:88-91.
- [54]Stack JH, Herman PK, Schu PV, Emr SD: A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J 1993, 12:2195-2204.
- [55]Stack JH, DeWald DB, Takegawa K, Emr SD: Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast. J Cell Biol 1995, 129:321-334.
- [56]Wendland B, McCaffery JM, Xiao Q, Emr SD: A novel fluorescence-activated cell sorter-based screen for yeast endocytosis mutants identifies a yeast homologue of mammalian eps15. J Cell Biol 1996, 135:1485-1500.
- [57]Kihara A, Noda T, Ishihara N, Ohsumi Y: Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 2001, 152:519-530.
- [58]Strahl T, Thorner J: Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 2007, 1771:353-404.
- [59]Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H: The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 2006, 6:744-750.
- [60]Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S: Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet 2009, 50:301-310.
- [61]Finley D, Ulrich HD, Sommer T, Kaiser P: The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 2012, 192:319-360.
- [62]Kato M, Kito K, Ota K, Ito T: Remodeling of the SCF complex-mediated ubiquitination system by compositional alteration of incorporated F-box proteins. Proteomics 2010, 10:115-123.
- [63]Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H: Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett 1999, 450:27-34.
- [64]Xie Y, Varshavsky A: RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci USA 2001, 98:3056-3061.
- [65]Wang X, Xu H, Ju D, Xie Y: Disruption of Rpn4-induced proteasome expression in Saccharomyces cerevisiae reduces cell viability under stressed conditions. Genetics 2008, 180:1945-1953.
- [66]Rothermel BA, Shyjan AW, Etheredge JL, Butow RA: Transactivation by Rtg1p, a basic helix-loop-helix protein that functions in communication between mitochondria and the nucleus in yeast. J Biol Chem 1995, 270:29476-29482.
- [67]Chelstowska A, Butow RA: RTG genes in yeast that function in communication between mitochondria and the nucleus are also required for expression of genes encoding peroxisomal proteins. J Biol Chem 1995, 270:18141-18146.
- [68]Otero JM, Vongsangnak W, Asadollahi MA, Olivares-Hernandes R, Maury J, Farinelli L, Barlocher L, Osteras M, Schalk M, Clark A, Nielsen J: Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. BMC Genomics 2010, 11:723. BioMed Central Full Text
- [69]Oud B, Flores CL, Gancedo C, Zhang X, Trueheart J, Daran JM, Pronk JT, van Maris AJ: An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact 2012, 11:131. BioMed Central Full Text
- [70]Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 1998, 14:115-132.
- [71]van Dijken JP, Bauer J, Brambilla L, Duboc P, Francois JM, Gancedo C, Giuseppin ML, Heijnen JJ, Hoare M, Lange HC, Madden EA, Niederberger P, Nielsen J, Parrou JL, Petit T, Porro D, Reuss M, van Riel N, Rizzi M, Steensma HY, Verrips CT, Vindelov J, Pronk JT: An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 2000, 26:706-714.
- [72]Entian KD, Kotter P: Yeast genetic strain and plasmid collections. Method Microbiol 2007, 36:629-666.
- [73]Verduyn C, Postma E, Scheffers WA, van Dijken JP: Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 1992, 8:501-517.
- [74]Bahalul M, Kaneti G, Kashi Y: Ether-zymolyase ascospore isolation procedure: an efficient protocol for ascospores isolation in Saccharomyces cerevisiae yeast. Yeast 2010, 27:999-1003.
- [75]Gietz RD, Schiestl RH: High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2007, 2:31-34.
- [76]Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26:589-595.
- [77]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
- [78]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
- [79]Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998, 8:175-185.
- [80]Ewing B, Green P: Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998, 8:186-194.
- [81]Odorizzi G, Katzmann DJ, Babst M, Audhya A, Emr SD: Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. J Cell Sci 2003, 116:1893-1903.
- [82]Eilbeck K, Lewis SE, Mungall CJ, Yandell M, Stein L, Durbin R, Ashburner M: The Sequence Ontology: a tool for the unification of genome annotations. Genome Biol 2005, 6:R44. BioMed Central Full Text
- [83]Knijnenburg TA, de Winde JH, Daran JM, Daran-Lapujade P, Pronk JT, Reinders MJ, Wessels LF: Exploiting combinatorial cultivation conditions to infer transcriptional regulation. BMC Genomics 2007, 8:25. BioMed Central Full Text
- [84]Knijnenburg TA, Daran JM, van den Broek MA, Daran-Lapujade PA, de Winde JH, Pronk JT, Reinders MJ, Wessels LF: Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: a quantitative analysis of a compendium of chemostat-based transcriptome data. BMC Genomics 2009, 10:53. BioMed Central Full Text
- [85]Kresnowati MT, van Winden WA, Almering MJ, ten Pierick A, Ras C, Knijnenburg TA, Daran-Lapujade P, Pronk JT, Heijnen JJ, Daran JM: When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2006, 2:49.