期刊论文详细信息
BMC Biotechnology
Rheological characterization of an injectable alginate gel system
Benjamin Endré Larsen3  Jorunn Bjørnstad4  Erik Olai Pettersen1  Hanne Hjorth Tønnesen3  Jan Egil Melvik2 
[1] Department of Physics, University of Oslo, Oslo, Norway
[2] Current address: Origomar AS, Oslo, Norway
[3] School of Pharmacy, University of Oslo, Oslo, Norway
[4] Current address: Elopak AS, Spikkestad, Norway
关键词: Rheological characterization;    Gel system;    Gelling kinetics;    Biocompatible;    Alginate gel;   
Others  :  1210263
DOI  :  10.1186/s12896-015-0147-7
 received in 2014-07-18, accepted in 2015-04-21,  发布年份 2015
PDF
【 摘 要 】

Background

This work investigates a general method for producing alginate gel matrices using an internal mode of gelation that depends solely on soluble alginate and alginate/gelling ion particles. The method involves the formulation of two-component kits comprised of soluble alginate and insoluble alginate/gelling ion particles. Gelling kinetics, elastic and Young’s moduli were investigated for selected parameters with regard to soluble alginate guluronate content, molecular weight, calcium or strontium gelling ions and alginate gelling ion particle sizes in the range between 25 and 125 micrometers.

Results

By mixing the two components and varying the parameters mentioned above, alginate gel matrices with tailor-made viscoelastic properties and gelling kinetics were obtained. Final gel elasticity depended on alginate type, concentration and gelling ion. The gelling rate could be manipulated, e.g. through selection of the alginate type and molecular weight, particle sizes and the concentration of non-gelling ions.

Conclusions

Formulations of the injectable and moldable alginate system presented have recently been used within specific medical applications and may have potential within regenerative medicine or other fields.

【 授权许可】

   
2015 Larsen et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150605012502692.pdf 1064KB PDF download
Figure 6. 78KB Image download
Figure 5. 29KB Image download
Figure 4. 78KB Image download
Figure 3. 36KB Image download
Figure 2. 80KB Image download
Figure 1. 47KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Goren A, Dahan N, Goren E, Baruch L, Machluf M. Encapsulated human mesenchymal stem cells: a unique hypoimmunogenic platform for long-term cellular therapy. FASEB J. 2009; 24(1):22-31.
  • [2]Johnson AS, Fisher RJ, Weir GC, Colton CK. Oxygen consumption and diffusion in assemblages of respiring spheres: Performance enhancement of a bioartificial pancreas. Chem Eng Sci. 2009; 64(22):4470-87.
  • [3]Freeman I, Kedem A, Cohen S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials. 2008; 29(22):3260-8.
  • [4]Ueng SWN, Lee MS, Lin SS, Chan EC, Liu SJ. Development of a biodegradable alginate carrier system for antibiotics and bone cells. J Orthop Res. 2007; 25(1):62-72.
  • [5]Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV. Microencapsulation of probiotics for gastrointestinal delivery. J Control Release. 2012; 162(1):56-67.
  • [6]Burdett E, Kasper FK, Mikos AG, Ludwig JA. Engineering Tumors: A Tissue Engineering Perspective in Cancer Biology. Tissue Eng Part B-Reviews. 2010; 16(3):351-9.
  • [7]Strand BL, Mørch YA, Skjåk-Bræk G. Alginate as immobilization matrix for cells. Minerva Biotecnologica. 2000; 12(4):223-33.
  • [8]Soon-Shiong P, Heintz RE, Merideth N, Yao QX, Yao Z, Zheng T, Murphy M, Moloney MK, Schmehl M, Harris M. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet. 1994; 343(8902):950-1.
  • [9]Rokstad AM, Brekke OL, Steinkjer B, Ryan L, Kollarikova G, Strand BL, Skjak-Braek G, Lacik I, Espevik T, Mollnes TE. Alginate microbeads are complement compatible, in contrast to polycation containing microcapsules, as revealed in a human whole blood model. Acta Biomater. 2011; 7(6):2566-78.
  • [10]Hoesli CA, Raghuram K, Kiang RLJ, Mocinecova D, Hu XK, Johnson JD, Lacik I, Kieffer TJ, Piret JM. Pancreatic Cell Immobilization in Alginate Beads Produced by Emulsion and Internal Gelation. Biotechnol Bioeng. 2011; 108(2):424-34.
  • [11]Duggal S, Fronsdal KB, Szoke K, Shahdadfar A, Melvik JE, Brinchmann JE. Phenotype and Gene Expression of Human Mesenchymal Stem Cells in Alginate Scaffolds. Tissue Eng A. 2009; 15(7):1763-73.
  • [12]Purcell EK, Singh A, Kipke DR. Alginate Composition Effects on a Neural Stem Cell-Seeded Scaffold. Tissue Engineering Part C-Methods. 2009; 15(4):541-50.
  • [13]Prang P, Muller R, Eljaouhari A, Heckmann K, Kunz W, Weber T, Faber C, Vroemen M, Bogdahn U, Weidner N. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials. 2006; 27(19):3560-9.
  • [14]Jain A, Kim Y-T, McKeon RJ, Bellamkonda RV. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials. 2006; 27(3):497-504.
  • [15]Lee CSD, Gleghorn JP, Choi NW, Cabodi M, Stroock AD, Bonassar LJ. Integration of layered chondrocyte-seeded alginate hydrogel scaffolds. Biomaterials. 2007; 28(19):2987-93.
  • [16]Dhollander AAM, Verdonk PCM, Lambrecht S, Verdonk R, Elewaut D, Verbruggen G, Almqvist KF. Midterm Results of the Treatment of Cartilage Defects in the Knee Using Alginate Beads Containing Human Mature Allogenic Chondrocytes. Am J Sports Med. 2012; 40(1):75-82.
  • [17]Lee BR, Hwang JW, Choi YY, Wong SF, Hwang YH, Lee DY, Lee SH. In situ formation and collagen-alginate composite encapsulation of pancreatic islet spheroids. Biomaterials. 2012; 33(3):837-45.
  • [18]Galateanu B, Dimonie D, Vasile E, Nae S, Cimpean A, Costache M. Layer-shaped alginate hydrogels enhance the biological performance of human adipose-derived stem cells. BMC Biotechnol. 2012; 12(1):35. BioMed Central Full Text
  • [19]Kang IK, Moon JS, Jeon HM, Meng W, Kim YI, Hwang YJ, Kim S. Morphology and metabolism of Ba-alginate encapsulated hepatocytes with galactosylated poly(allyl amine) and poly(vinyl alcohol) as extracellular matrices. J Mater Sci-Mater Med. 2005; 16(6):533-9.
  • [20]Wideroe H, Danielsen S. Evaluation of the use of Sr2+ in alginate immobilization of cells. Naturwissenschaften. 2001; 88(5):224-8.
  • [21]Johnson AS, O'Sullivan E, D'Aoust LN, Omer A, Bonner-Weir S, Fisher RJ, Weir GC, Colton CK. Quantitative Assessment of Islets of Langerhans Encapsulated in Alginate. Tissue Engineering Part C-Methods. 2011; 17(4):435-49.
  • [22]Mørch YA, Donati I, Strand BL, Skjåk-Bræk G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules. 2006; 7(5):1471-80.
  • [23]Grant GT, Morris ER, Rees DA, Smith PJC, Thom D. Biological Interactions between Polysaccharides and Divalent Cations - Egg-Box Model. FEBS Letters. 1973; 32(1):195-8.
  • [24]Donati I, Morch YA, Strand BL, Skjak-Braek G, Paoletti S. Effect of Elongation of Alternating Sequences on Swelling Behavior and Large Deformation Properties of Natural Alginate Gels. J Phys Chem B. 2009; 113(39):12916-22.
  • [25]Donati I, Holtan S, Mørch YA, Borgogna M, Dentini M, Skjåk-Bræk G. New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules. 2005; 6(2):1031-40.
  • [26]Klokk TI, Melvik JE. Controlling the size of alginate gel beads by use of a high electrostatic potential. J Microencapsul. 2002; 19(4):415-24.
  • [27]Strand BL, Mørch YA, Espevik T, Skjåk-Bræk G. Visualization of alginate-poly-L-lysine-alginate microcapsules by confocal laser scanning microscopy. Biotechnol Bioeng. 2003; 82(4):386-94.
  • [28]Ballyns JJ, Wright TM, Bonassar LJ. Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus. Biomaterials. 2010; 31(26):6756-63.
  • [29]Chang SCN, Tai CL, Chung HY, Lin TM, Jeng LB. Bone Marrow Mesenchymal Stem Cells Form Ectopic Woven Bone In Vivo Through Endochondral Bone Formation. Artif Organs. 2009; 33(4):301-8.
  • [30]Cohen DL, Malone E, Lipson H, Bonassar LJ. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng. 2006; 12(5):1325-35.
  • [31]Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001; 22(6):511-21.
  • [32]Smith AM, Harris JJ, Shelton RM, Perrie Y. 3D culture of bone-derived cells immobilised in alginate following light-triggered gelation. J Control Release. 2007; 119(1):94-101.
  • [33]Holte O, Skretting A, Tonnesen HH, Karlsen J. Preparation of a radionuclide/gel formulation for localised radiotherapy to a wide range of organs and tissues. Pharmazie. 2006; 61(5):420-4.
  • [34]Larsen BE, Sandvik JA, Karlsen J, Pettersen EO, Melvik JE. Oxygen consumption in T-47D cells immobilized in alginate. Cell Prolif. 2013; 46(4):469-81.
  • [35]Olderoy MO, Lilledahl MB, Beckwith MS, Melvik JE, Reinholt F, Sikorski P, Brinchmann JE. Biochemical and Structural Characterization of Neocartilage Formed by Mesenchymal Stem Cells in Alginate Hydrogels. Plos One, 2014. 9(3):e91662.
  • [36]Lee LC, Zhihong Z, Hinson A, Guccione JM. Reduction in left ventricular wall stress and improvement in function in failing hearts using Algisyl-LVR. Journal of visualized experiments: JoVE, 2013(74).
  • [37]Lee LC, Wall ST, Klepach D, Ge L, Zhang Z, Lee RJ, Hinson A, Gorman JH, 3rd, Gorman RC, Guccione JM. Algisyl-LVR with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int J Cardiol. 2013;168(3):2022–8.
  • [38]Lee RJ, Hinson A, Helgerson S, Bauernschmitt R, Sabbah HN. Polymer-Based Restoration of Left Ventricular Mechanics. Cell Transplant. 2013; 22(3):529-33.
  • [39]Holme HK, Davidsen L, Kristiansen A, Smidsrod O. Kinetics and mechanisms of depolymerization of alginate and chitosan in aqueous solution. Carbohydr Polym. 2008; 73(4):656-64.
  • [40]Draget KI, Steinsvag K, Onsoyen E, Smidsrod O. Na- and K-alginate; effect on Ca2 + −gelation. Carbohydr Polym. 1998; 35(1–2):1-6.
  • [41]Lu L, Liu XX, Qian LY, Tong Z. Sol–gel transition in aqueous alginate solutions induced by cupric cations observed with viscoelasticity. Polym J. 2003; 35(10):804-9.
  • [42]Lu L, Liu XX, Dai L, Tong Z. Difference in concentration dependence of relaxation critical exponent n for alginate solutions at sol–gel transition induced by calcium cations. Biomacromolecules. 2005; 6(4):2150-6.
  • [43]Jorgensen TE, Sletmoen M, Draget KI, Stokke BT. Influence of oligoguluronates on alginate gelation, kinetics, and polymer organization. Biomacromolecules. 2007; 8(8):2388-97.
  • [44]Martinsen A, Skjåk-Bræk G, Smidsrød O. Alginate as immobilization material: I. Correlation between Chemical and Physical Properties of Alginate Gel Beads. Biotechnol Bioeng. 1989; 33:79-89.
  • [45]Funami T, Fang Y, Noda S, Ishihara S, Nakauma M, Draget KI, Nishinari K, Phillips GO. Rheological properties of sodium alginate in an aqueous system during gelation in relation to supermolecular structures and Ca(2+) binding. Food Hydrocoll. 2009; 23(7):1746-55.
  • [46]Kong HJ, Smith MK, Mooney DJ. Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials. 2003; 24(22):4023-9.
  • [47]Adler M. Challenges in the Development of Pre-filled Syringes for Biologics from a Formulation Scientist’s Point of View. American Pharmaceutical Review, 2012. 15(1):(online).
  • [48]Becker TA, Kipke DR, Brandon T. Calcium alginate gel: A biocompatible and mechanically stable polymer for endovascular embolization. J Biomed Mater Res. 2001; 54(1):76-86.
  • [49]Aguado BA, Mulyasasmita W, Su J, Lampe KJ, Heilshorn SC. Improving Viability of Stem Cells During Syringe Needle Flow Through the Design of Hydrogel Cell Carriers. Tissue Eng A. 2012; 18(7–8):806-15.
  • [50]Piskounova S, Rojas R, Bergman K, Hilborn J. The Effect of Mixing on the Mechanical Properties of Hyaluronan-Based Injectable Hydrogels. Macromol Mater Eng. 2011; 296(10):944-51.
  • [51]Chan ES, Lim TK, Voo WP, Pogaku R, Tey BT, Zhang ZB. Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuol. 2011; 9(3):228-34.
  • [52]Draget KI, Strand BL, Hartmann M, Valla S, Smidsrød O, Skjåk-Bræk G. Ionic and acid gel formation of epimerised alginates; the effect of AlgE4. Int J Biol Macromol. 2000; 27(2):117-22.
  • [53]Vallee F, Muller C, Durand A, Schimchowitsch S, Dellacherie E, Kelche C, Cassel JC, Leonard M. Synthesis and rheological properties of hydrogels based on amphiphilic alginate-amide derivatives. Carbohydr Res. 2009; 344(2):223-8.
  • [54]Pek YS, Wan ACA, Ying JY. The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials. 2010; 31(3):385-91.
  • [55]Discher DE, Janmey PA, Wang Y-L. Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science. 2005; 310(5751):1139-43.
  文献评价指标  
  下载次数:123次 浏览次数:43次