期刊论文详细信息
BioMedical Engineering OnLine
Automatic method for the dermatological diagnosis of selected hand skin features in hyperspectral imaging
Robert Koprowski1  Sławomir Wilczyński2  Zygmunt Wróbel1  Sławomir Kasperczyk3  Barbara Błońska-Fajfrowska2 
[1] Department of Biomedical Computer Systems, University of Silesia, Faculty of Computer Science and Materials Science, Institute of Computer Science, ul. Będzińska 39, Sosnowiec 41-200, Poland
[2] Department of Basic Biomedical Science, School of Pharmacy, Medical University of Silesia in Katowice, ul. Kasztanowa 3, Sosnowiec 41-200, Poland
[3] Department of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland
关键词: Segmentation;    Measurement automation;    Image processing;    Hyperspectral imaging;   
Others  :  794882
DOI  :  10.1186/1475-925X-13-47
 received in 2014-03-12, accepted in 2014-04-10,  发布年份 2014
PDF
【 摘 要 】

Introduction

Hyperspectral imaging has been used in dermatology for many years. The enrichment of hyperspectral imaging with image analysis broadens considerably the possibility of reproducible, quantitative evaluation of, for example, melanin and haemoglobin at any location in the patient's skin. The dedicated image analysis method proposed by the authors enables to automatically perform this type of measurement.

Material and method

As part of the study, an algorithm for the analysis of hyperspectral images of healthy human skin acquired with the use of the Specim camera was proposed. Images were collected from the dorsal side of the hand. The frequency λ of the data obtained ranged from 397 to 1030 nm. A total of 4'000 2D images were obtained for 5 hyperspectral images. The method proposed in the paper uses dedicated image analysis based on human anthropometric data, mathematical morphology, median filtration, normalization and others. The algorithm was implemented in Matlab and C programs and is used in practice.

Results

The algorithm of image analysis and processing proposed by the authors enables segmentation of any region of the hand (fingers, wrist) in a reproducible manner. In addition, the method allows to quantify the frequency content in different regions of interest which are determined automatically. Owing to this, it is possible to perform analyses for melanin in the frequency range λE∈(450,600) nm and for haemoglobin in the range λH∈(397,500) nm extending into the ultraviolet for the type of camera used. In these ranges, there are 189 images for melanin and 126 images for haemoglobin. For six areas of the left and right sides of the little finger (digitus minimus manus), the mean values of melanin and haemoglobin content were 17% and 15% respectively compared to the pattern.

Conclusions

The obtained results confirmed the usefulness of the proposed new method of image analysis and processing in dermatology of the hand as it enables reproducible, quantitative assessment of any fragment of this body part. Each image in a sequence was analysed in this way in no more than 100 ms using Intel Core i5 CPU M460 @2.5 GHz 4 GB RAM.

【 授权许可】

   
2014 Koprowski et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705074040405.pdf 1606KB PDF download
Figure 8. 161KB Image download
Figure 7. 163KB Image download
Figure 6. 201KB Image download
Figure 5. 95KB Image download
Figure 4. 142KB Image download
Figure 3. 119KB Image download
Figure 2. 41KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Plaza A, Martinez P, Plaza J, Perez R: Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Trans Geosci Rem Sens 2005, 43(3):466-479.
  • [2]Benediktsson JA, Palmason JA, Sveinsson JR: Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Rem Sens 2005, 43(3):480-491.
  • [3]Koprowski R, Teper S, Wrobel Z, Wylegala E: Automatic analysis of selected choroidal diseases in OCT images of the eye fundus. Biomed Eng Online 2013, 12:117. BioMed Central Full Text
  • [4]Fauvel M, Benediktsson JA, Chanussot J, Sveinsson JR: Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans Geosci Rem Sens 2008, 46(11):3804-3814.
  • [5]Noyel G, Angulo J, Jeulin D: Morphological segmentation of hyperspectral images. Image Anal Stereol 2007, 26(3):101-109.
  • [6]Dalla MM, Villa A, Benediktsson JA, Chanussot J, Bruzzone L: Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci Remote Sens Lett 2011, 8(3):542-546.
  • [7]Rellier G, Descombes X, Falzon F, Zerubia J: Texture feature analysis using a Gauss-Markov model in hyperspectral image classification. IEEE Trans Geosci Remote Sens 2004, 42(7):1543-1551.
  • [8]Camps-Valls G, Gomez-Chova L, Munoz-Mari J, Vila-Frances J, Calpe-Maravilla J: Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 2006, 3(1):93-97.
  • [9]Zhang X, Younan NH, O'hara CG: Wavelet domain statistical hyperspectral soil texture classification. IEEE Trans Geosci Remote Sens 2005, 43(3):615-618.
  • [10]Pan Z, Member S, Healey G, Member S, Prasad M, Tromberg B: Face recognition in hyperspectral images. IEEE Trans Pattern Anal Mach Intell 2003, 25(12):1552-1560.
  • [11]Stamatas GN, Balas CJ, Kollias N: Hyperspectral image acquisition and analysis of skin. Biomedical Optics 2003. International Society for Optics and Photonics 2003, 77-82.
  • [12]Liu Z, Yan JQ, Zhang D, Li QL: Automated tongue segmentation in hyperspectral images for medicine. Appl Optic 2007, 46(34):8328-8334.
  • [13]Li Q, Chen Z, He X, Wang Y, Liu H, Xu Q: Automatic identification and quantitative morphometry of unstained spinal nerve using molecular hyperspectral imaging technology. Neurochem Int 2012, 61(8):1375-1384.
  • [14]Zuzak KJ, Francis RP, Wehner EF, Litorja M, Cadeddu JA, Livingston EH: Active DLP hyperspectral illumination: a noninvasive, in vivo, system characterization visualizing tissue oxygenation at near video rates. Anal Chem 2011, 83(19):7424-7430.
  • [15]Zuzak KJ, Gladwin MT, Cannon RO, Levin IW: Imaging haemoglobin oxygen saturation in sickle cell disease patients using noninvasive visible reflectance hyperspectral techniques: effects of nitric oxide. Am J Physiol Heart Circ Physiol 2003, 285(3):H1183-H1189.
  • [16]Dicker DT, Lerner J, Van Belle P, Barth SF, Guerry D, Herlyn M, Elder DE, El-Deiry WS: Differentiation of normal skin and melanoma using high resolution hyperspectral imaging. Cancer Biol Ther 2006, 5(8):1033-1038.
  • [17]Samarov DV, Clarke ML, Lee JY, Allen DW, Litorja M, Hwang J: Algorithm validation using multicolor phantoms. Biomed Opt Express 2012, 3(6):1300-1311.
  • [18]Rosas JG, Blanco M: A criterion for assessing homogeneity distribution in hyperspectral images. Part 1: homogeneity index bases and blending processes. J Pharm Biomed Anal 2012, 70:680-690.
  • [19]Rosas JG, Blanco M: A criterion for assessing homogeneity distribution in hyperspectral images. Part 2: application of homogeneity indices to solid pharmaceutical dosage forms. J Pharm Biomed Anal 2012, 70:691-699.
  • [20]Koprowski R, Wrobel Z: Identification of layers in a tomographic image of an eye based on the canny edge detection. Inf Technol Biomed Adv Intell Soft Comput 2008, 47:232-239.
  • [21]Koprowski R, Teper S, Weglarz B, Wylęgała E, Krejca M, Wróbel Z: Fully automatic algorithm for the analysis of vessels in the angiographic image of the eye fundus. Biomed Eng Online 2012, 11:35. BioMed Central Full Text
  • [22]Koprowski R, Wróbel Z: Layers recognition in tomographic eye image based on random contour analysis. Computer recognition systems 3. Adv Intell Soft Comput 2009, 57:471-478.
  • [23]Otsu N: A threshold selection method from gray-level histograms. IEEE Trans Sys Man Cyber 1979, 9(1):62-66.
  • [24]Liu ZW, Faddegon S, Olweny EO, Best SL, Jackson N, Raj GV, Zuzak KJ, Cadeddu JA: Renal oxygenation during partial nephrectomy: a comparison between artery-only occlusion versus artery and vein occlusion. J Endourol 2013, 27(4):470-474.
  • [25]Stam B, van Gemert MJ, van Leeuwen TG, Teeuw AH, van der Wal AC, Aalders MC: Can color inhomogeneity of bruises be used to establish their age? J Biophotonics 2011, 4(10):759-767.
  • [26]Filik J, Rutter AV, Sulé-Suso J, Cinque G: Morphological analysis of vibrational hyperspectral imaging data. Analyst 2012, 137(24):5723-5729.
  • [27]Olweny EO, Faddegon S, Best SL, Jackson N, Wehner EF, Tan YK, Zuzak KJ, Cadeddu JA: Renal oxygenation during robot-assisted laparoscopic partial nephrectomy: characterization using laparoscopic digital light processing hyperspectral imaging. J Endourol 2013, 27(3):265-269.
  • [28]Edelman G, van Leeuwen TG, Aalders MC: Hyperspectral imaging for the age estimation of blood stains at the crime scene. Forensic Sci Int 2012, 223(1–3):72-77.
  • [29]Akbari H, Halig LV, Schuster DM, Osunkoya A, Master V, Nieh PT, Chen GZ, Fei B: Hyperspectral imaging and quantitative analysis for prostate cancer detection. J Biomed Opt 2012, 17(7):076005.
  • [30]Vasefi F, Najiminaini M, Ng E, Chamson-Reig A, Kaminska B, Brackstone M, Carson J: Transillumination hyperspectral imaging for histopathological examination of excised tissue. J Biomed Opt 2011, 16(8):086014.
  • [31]Yudovsky D, Nouvong A, Schomacker K, Pilon L: Assessing diabetic foot ulcer development risk with hyperspectral tissue oximetry. J Biomed Opt 2011, 16(2):026009.
  • [32]Akbari H, Uto K, Kosugi Y, Kojima K, Tanaka N: Cancer detection using infrared hyperspectral imaging. Cancer Sci 2011, 102(4):852-857.
  • [33]Porwik P: Efficient spectral method of identification of linear Boolean function. Control Cybern 2004, 33(4):663-678.
  • [34]Sonka M, Michael Fitzpatrick J: Medical Image Processing and Analysis. Belligham: SPIE; 2000. [Handbook of Medical Imaging]
  • [35]Siedlecki D, Nowak J, Zajac M: Placement of a crystalline lens and intraocular lens: retinal image quality. J Biomed Opt 2006, 11(5):054012.
  • [36]Korzynska A, Hoppe A, Strojny W, Wertheim D: Investigation of a Combined Texture and Contour Method for Segmentation of Light Microscopy Cell Images. In Proceedings of the Second IASTED International Conference on Biomedical Engineering. Anaheim, Calif. Calgary, Zurich: ACTA Press; 2004:234-239.
  • [37]Korzynska A, Iwanowski M: Multistage morphological segmentation of bright-field and fluorescent microscopy images. Opt Electron Rev 2012, 20(2):87-99.
  • [38]Castro A, Siedlecki D, Borja D, Uhlhorn S, Parel JM, Manns F, Marcos S: Age-dependent variation of the gradient index profile in human crystalline lenses. J Mod Opt 2011, 58(19–20):1781-1787.
  • [39]Korus P, Dziech A: Efficient method for content reconstruction with self-embedding. IEEE Trans Image Process 2013, 22(3):1134-1147.
  • [40]Tadeusiewicz R, Ogiela MR: Automatic understanding of medical images new achievements in syntactic analysis of selected medical images. Biocybern Biomed Eng 2002, 22(4):17-29.
  • [41]Edelman GJ, Gaston E, Leeuwen TG, Cullen PJ, Aalders MC: Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Sci Int 2012, 223(1–3):28-39.
  文献评价指标  
  下载次数:118次 浏览次数:38次