期刊论文详细信息
BMC Bioinformatics
Integrated web visualizations for protein-protein interaction databases
Fleur Jeanquartier2  Claire Jean-Quartier2  Andreas Holzinger1 
[1] Institute for Information Systems & Computer Media Graz University of Technology, Inffeldgasse 16c, Graz 8010, Austria
[2] Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, Graz 8036, Austria
关键词: Systems biology;    Protein-protein interaction;    Network visualization;    Visual analysis;    Visualization;   
Others  :  1232172
DOI  :  10.1186/s12859-015-0615-z
 received in 2015-01-09, accepted in 2015-05-15,  发布年份 2015
PDF
【 摘 要 】

Background

Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks.

Results

We selected M =10 out of N =53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015 webcite.

Conclusions

Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.

【 授权许可】

   
2015 Jeanquartier et al.

【 预 览 】
附件列表
Files Size Format View
20151113014444787.pdf 3831KB PDF download
Figure 1. 43KB Image download
Fig. 5. 43KB Image download
Fig. 4. 100KB Image download
Fig. 3. 53KB Image download
Fig. 2. 69KB Image download
Fig. 1. 83KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Figure 1.

【 参考文献 】
  • [1]Berg JM, Tymoczko JL, Stryer L, Clarke ND. Biochemistry. Stryer, Lubert; 2002.
  • [2]Das J, Mohammed J, Yu H. Genome-scale analysis of interaction dynamics reveals organization of biological networks. Bioinformatics. 2012; 28:1873-1878.
  • [3]Mathivanan S, Periaswamy B, Gandhi T, Kandasamy K, Suresh S, Mohmood R, Ramachandra Y, Pandey A. An evaluation of human protein-protein interaction data in the public domain. BMC bioinformatics. 2006; 7:S19.
  • [4]O’Donoghue SI, Gavin AC, Gehlenborg N, Goodsell DS, Hériché JK, Nielsen CB, North C, Olson AJ, Procter JB, Shattuck DW et al.. Visualizing biological data - now and in the future. Nat Methods. 2010; 7:S2-S4.
  • [5]Turkay C, Jeanquartier F, Holzinger A, Hauser H. On computationally-enhanced visual analysis of heterogeneous data and its application in biomedical informatics. Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. Springer, Berlin Heidelberg; 2014.
  • [6]Holzinger A, Dehmer M, Jurisica I. Knowledge Discovery and interactive Data Mining in Bioinformatics–State-of-the-Art, future challenges and research directions. BMC Bioinformatics. 2014; 15(Suppl 6):I1.
  • [7]Han K, Park B, Kim H, Hong J, Park J. Hpid: The human protein interaction database. Bioinformatics. 2004; 20:2466-2470.
  • [8]Brown KR, Jurisica I. Online predicted human interaction database. Bioinformatics. 2005; 21:2076-2082.
  • [9]Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P et al.. The string database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011; 39:D561-D568.
  • [10]Chatr-aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O’Donnell L et al.. The biogrid interaction database: 2013 update. Nucleic Acids Res. 2013; 41:D816-D823.
  • [11]Jeanquartier F, Holzinger A. On visual analytics and evaluation in cell physiology: a case study. In: Availability, Reliability, and Security in Information Systems and HCI. Berlin Heidelberg: Springer: 2013. p. 495–502.
  • [12]Ware C. Information Visualization: Perception for Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA; 2012.
  • [13]Holzinger A, Errath M. Mobile computer web-application design in medicine: some research based guidelines. Universal Access in the Information Society. 2007; 6:31-41.
  • [14]Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011; 27:431-432.
  • [15]Gehlenborg N, O’Donoghue S, Baliga N, Goesmann A, Hibbs M, Kitano H, Kohlbacher O, Neuweger H, Schneider R, Tenenbaum D et al.. Visualization of omics data for systems biology. Nat Sethods. 2010; 7:S56-S68.
  • [16]Leong GW, Lee SC, Lau CC, Klappa P, Omar MSS. Comparison of computational tools for protein-protein interaction (ppi) mapping and analysis. Jurnal Teknologi. 2013; 63.
  • [17]Consortium EP et al.. The encode (encyclopedia of dna elements) project. Science. 2004; 306:636-640.
  • [18]Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S et al.. A draft map of the human proteome. Nature. 2014; 509:575-581.
  • [19]Berggr̀d T, Linse S, James P. Methods for the detection and analysis of protein-protein interactions. PROTEOMICS. 2007; 7:2833-2842.
  • [20]Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD. Cytoscape web: an interactive web-based network browser. Bioinformatics. 2010; 26:2347-2348.
  • [21]Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, et al. The intact molecular interaction database in 2012. Nucleic Acids Res. 2011. gkr1088.
  • [22]Salazar GA, Meintjes A, Mulder N. Ppi layouts: Biojs components for the display of protein-protein interactions. F1000Research. 2014; 3:50.
  • [23]Salazar GA, Meintjes A, Mazandu G, Rapanoël HA, Akinola RO, Mulder NJ. A web-based protein interaction network visualizer. BMC bioinformatics. 2014; 15:129.
  • [24]Albrecht M, Kerren A, Klein K, Kohlbacher O, Mutzel P, Paul W, Schreiber F, Wybrow M. On open problems in biological network visualization. Graph Drawing. Volume 5849 of Lecture Notes in Computer Science. Eppstein D, Gansner E, editors. Springer, Berlin Heidelberg; 2010.
  • [25]Krzywinski M, Birol I, Jones SJ, Marra MA. Hive plots - rational approach to visualizing networks. Brief Bioinformatics. 2012; 13:627-644.
  • [26]Agapito G, Guzzi PH, Cannataro M. Visualization of protein interaction networks: problems and solutions. BMC Bioinformatics. 2013; 14:S1.
  • [27]Holzinger A, Ofner B, Dehmer M. Multi-touch graph-based interaction for knowledge discovery on mobile devices: State-of-the-art and future challenges. Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. Springer, Berlin Heidelberg; 2014.
  • [28]Herbert KG, Spirollari J, Wang JT, Piel WH, Westbrook J, Barker WC, Hu ZZ, Wu CH. Bioinformatic databases: Wiley Encyclopedia of Computer Science and Engineering; 2008.
  • [29]Droit A, Poirier GG, Hunter JM. Experimental and bioinformatic approaches for interrogating protein-protein interactions to determine protein function. J Mol Endocrinol. 2005; 34:263-280.
  • [30]Ben-Hur A, Noble WS. Kernel methods for predicting protein-protein interactions. Bioinformatics. 2005; 21:i38-i46.
  • [31]Mosca R, Pons T, Céol A, Valencia A, Aloy P. Towards a detailed atlas of protein–protein interactions. Curr Opin Struct Biol. 2013; 23:929-940.
  • [32]Atias N, Sharan R. Comparative analysis of protein networks: hard problems, practical solutions. Commun ACM. 2012; 55:88-97.
  • [33]Tuncbag N, Kar G, Keskin O, Gursoy A, Nussinov R. A survey of available tools and web servers for analysis of protein–protein interactions and interfaces. Brief Bioinformatics. 2009; 10:217-232.
  • [34]Koh GC, Porras P, Aranda B, Hermjakob H, Orchard SE. Analyzing protein protein-interaction networks. J Proteome Res. 2012; 11:2014-2031.
  • [35]Klingström T, Plewczynski D. Protein-protein interaction and pathway databases, a graphical review. Brief Bioinformatics. 2011; 12:702-713.
  • [36]Bader GD, Cary MP, Sander C. Pathguide: a pathway resource list. Nucleic Acids Res. 2006; 34:D504-D506.
  • [37]Mora A, Michalickova K, Donaldson IM. A survey of protein interaction data and multigenic inherited disorders. BMC Bioinformatics. 2013; 14:47.
  • [38]Oveland E, Muth T, Rapp E, Martens L, Berven FS, Barsnes H. Viewing the proteome: How to visualize proteomics data. PROTEOMICS. 2015; 15:1341-1355.
  • [39]Pavlopoulos GA, O’Donoghue SI, Satagopam VP, Soldatos TG, Pafilis E, Schneider R. Arena3d: visualization of biological networks in 3d. BMC Syst Biol. 2008; 2:104.
  • [40]Han K, Ju BH, Park J. Interviewer: Dynamic visualization of protein-protein interactions. Graph Drawing. Volume 2528 of Lecture Notes in Computer Science. Goodrich M, Kobourov S, editors. Springer, Berlin Heidelberg; 2002.
  • [41]Byun Y, Han K. Visualization of protein-protein interaction networks using force-directed layout. Computational Science? ICCS 2003. Volume 2659 of Lecture Notes in Computer Science. Sloot P, Abramson D, Bogdanov A, Gorbachev Y, Dongarra J, Zomaya A, editors. Springer, Berlin Heidelberg; 2003.
  • [42]Wang Q, Tang B, Song L, Ren B, Liang Q, Xie F, Zhuo Y, Liu X, Zhang L. 3dscapecs: application of three dimensional, parallel, dynamic network visualization in cytoscape. BMC Bioinformatics. 2013; 14:322.
  • [43]Wang Y, Zhang XS, Chen L. Computational systems biology: integration of sequence, structure, network, and dynamics. BMC Syst Biol. 2011; 5:S1.
  • [44]Prokop A, Csukas B. Systems Biology: Integrative Biology and Simulation Tools. Springer, Berlin Heidelberg; 2013.
  • [45]Omenn GS. Grand challenges and great opportunities in science, technology, and public policy. Science. 2006; 314:1696-1704.
  • [46]Huang M, Ding S, Wang H, Zhu X. Mining physical protein-protein interactions from the literature. Genome Biol. 2008; 9:S12.
  • [47]Jaeger S, Gaudan S, Leser U, Rebholz-Schuhmann D. Integrating protein-protein interactions and text mining for protein function prediction. BMC Bioinformatics. 2008; 9:S2.
  • [48]Gopalacharyulu PV, Lindfors E, Bounsaythip C, Kivioja T, Yetukuri L, Hollmén J, Oreṡiċ M. Data integration and visualization system for enabling conceptual biology. Bioinformatics. 2005; 21:i177-i185.
  • [49]Moser E, Kargl J, Whistler JL, Waldhoer M, Tschische P. G protein-coupled receptor-associated sorting protein 1 regulates the postendocytic sorting of seven-transmembrane-spanning g protein-coupled receptors. Pharmacology. 2010; 86:22-29.
  • [50]Zheng X, Chang F, Zhang X, Rothman VL, Tuszynski GP. G-protein coupled receptor-associated sorting protein 1 (gasp-1), a ubiquitous tumor marker. Exp Mol Pathol. 2012; 93:111-115.
  • [51]Brooke J. Sus-a quick and dirty usability scale. Usability Eval Ind. 1996; 189:194.
  • [52]North C. Toward measuring visualization insight. IEEE Comput Graph Appl. 2006; 26:6-9.
  • [53]Carpendale S. Evaluating information visualizations. Information Visualization. Springer, Berlin Heidelberg; 2008.
  • [54]Lam H, Bertini E, Isenberg P, Plaisant C, Carpendale S. Empirical studies in information visualization: Seven scenarios. IEEE Trans Vis Comput Graph. 2012; 18:1520-1536.
  • [55]Lammarsch T, Aigner W, Bertone A, Miksch S, Turic T, Gartner J. A comparison of programming platforms for interactive visualization in web browser based applications. Information Visualisation, 2008. IV ’08. 12th International Conference. IEEE Computer Society, IEEE; 2008.
  • [56]Andrews K, Wright B. Fluiddiagrams: Web-based information visualisation using javascript and webgl. In: Proceedings of the Eurographics Conference on Visualization (EuroVis 2014 Short Paper): 2014. p. 91–95.
  • [57]Ono K, Demchak B, Ideker T. Cytoscape tools for the web age: D3.js and cytoscape.js exporters. F1000Research. 2014; 3:143-143.
  • [58]Harger JR, Crossno PJ. Comparison of open-source visual analytics toolkits. In: IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics: 2012. p. 82940E–82940E.
  • [59]Prieto C, De Las Rivas J. Apid: agile protein interaction dataanalyzer. Nucleic Acids Res. 2006; 34:W298-W302.
  • [60]Kamburov A, Stelzl U, Lehrach H, Herwig R. The consensuspathdb interaction database: 2013 update. Nucleic Acids Res. 2013; 41:D793-D800.
  • [61]Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, Del-Toro N, et al.The mintact project-intact as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014; 42:D358.
  • [62]Brown KR, Jurisica I. Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol. 2007; 8:R95.
  • [63]Calderone A, Castagnoli L. Cesareni, G: mentha: a resource for browsing integrated protein-interaction networks. Nat Methods. 2013; 10:690-691.
  • [64]Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E et al.. Mint, the molecular interaction database: 2012 update. Nucleic Acids Res. 2012; 40:D857-D861.
  • [65]Persico M, Ceol A, Gavrila C, Hoffmann R, Florio A, Cesareni G. Homomint: an inferred human network based on orthology mapping of protein interactions discovered in model organisms. BMC Bioinformatics. 2005; 6:S21.
  • [66]Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C et al.. String v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013; 41:D808-D815.
  • [67]Kalathur RKR, Pinto JP, Hernández-Prieto MA, Machado RS, Almeida D, Chaurasia G, Futschik ME. Unihi 7: an enhanced database for retrieval and interactive analysis of human molecular interaction networks. Nucleic Acids Res. 2014; 42:D408-D414.
  文献评价指标  
  下载次数:53次 浏览次数:10次