期刊论文详细信息
Biology of Sex Differences
Sex differences in the brain: a whole body perspective
Nancy G. Forger1  Geert J. de Vries1 
[1]Neuroscience Institute, Georgia State University, Atlanta 30302-5030, GA, USA
关键词: Sex difference;    Sensory system;    Placenta;    Muscle;    Liver;    Kidney;    Immune system;    Gut;    Environment;    Bladder;    Adipose tissue;    Brain;   
Others  :  1224030
DOI  :  10.1186/s13293-015-0032-z
 received in 2015-06-30, accepted in 2015-07-28,  发布年份 2015
PDF
【 摘 要 】

Most writing on sexual differentiation of the mammalian brain (including our own) considers just two organs: the gonads and the brain. This perspective, which leaves out all other body parts, misleads us in several ways. First, there is accumulating evidence that all organs are sexually differentiated, and that sex differences in peripheral organs affect the brain. We demonstrate this by reviewing examples involving sex differences in muscles, adipose tissue, the liver, immune system, gut, kidneys, bladder, and placenta that affect the nervous system and behavior. The second consequence of ignoring other organs when considering neural sex differences is that we are likely to miss the fact that some brain sex differences develop to compensate for differences in the internal environment (i.e., because male and female brains operate in different bodies, sex differences are required to make output/function more similar in the two sexes). We also consider evidence that sex differences in sensory systems cause male and female brains to perceive different information about the world; the two sexes are also perceived by the world differently and therefore exposed to differences in experience via treatment by others. Although the topic of sex differences in the brain is often seen as much more emotionally charged than studies of sex differences in other organs, the dichotomy is largely false. By putting the brain firmly back in the body, sex differences in the brain are predictable and can be more completely understood.

【 授权许可】

   
2015 de Vries and Forger.

【 预 览 】
附件列表
Files Size Format View
20150908001127279.pdf 929KB PDF download
Fig. 1. 108KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]Swaab DF, Hofman MA. Sexual differentiation of the human brain. A historical perspective. Prog Brain Res. 1984; 61:361-74.
  • [2]Jordan-Young R, Rumiati RI. Hardwired for sexism? Approaches to sex/gender in neuroscience. Neuroethics. 2012; 5(3):305-15.
  • [3]Fine C. Is there neurosexism in functional neuroimaging investigations of sex differences? Neuroethics. 2013; 6(2):369-409.
  • [4]Fine C, Jordan-Young R, Kaiser A, Rippon G. Plasticity, plasticity, plasticity…and the rigid problem of sex. Trends Cogn Sci. 2013; 17(11):550-1.
  • [5]Klein SL, Schiebinger L, Stefanick ML, Cahill L, Danska J, de Vries GJ et al.. Opinion: sex inclusion in basic research drives discovery. Proc Natl Acad Sci U S A. 2015; 112(17):5257-8.
  • [6]Werling DM, Geschwind DH. Sex differences in autism spectrum disorders. Curr Opin Neurol. 2013; 26(2):146-53.
  • [7]Burd L, Li Q, Kerbeshian J, Klug MG, Freeman RD. Tourette syndrome and comorbid pervasive developmental disorders. J Child Neurol. 2009; 24(2):170-5.
  • [8]Eme RF. Sex differences in child-onset, life-course-persistent conduct disorder. A review of biological influences. Clin Psychol Rev. 2007; 27(5):607-27.
  • [9]Holden C. Sex and the suffering brain. Science. 2005; 308(5728):1574-7.
  • [10]Landgren M, Kjellman B, Gillberg C. Attention deficit disorder with developmental coordination disorders. Arch Dis Child. 1998; 79(3):207-12.
  • [11]Miller MA. Gender-based differences in the toxicity of pharmaceuticals - The Food and Drug Administration’s perspective. Int J Toxicol. 2001; 20(3):149-52.
  • [12]De Vries GJ, Simerly RB. Anatomy, development, and function of sexually dimorphic neural circuits in the mammalian brain. In: Hormones, brain, and behavior volume IV development of hormone-dependent neuronal systems. Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Moss RL, Rubin RT, editors. Academic, San Diego; 2002: p.137-91.
  • [13]McCarthy MM, De Vries GJ, Forger NG. Sexual differentiation of the brain: mode, mechanisms, and meaning. In: Hormones, brain and behavior. 2nd ed. Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT, editors. Academic, San Diego; 2009: p.1707-44.
  • [14]Morris JA, Jordan CL, Breedlove SM. Sexual differentiation of the vertebrate nervous system. Nat Neurosci. 2004; 7(10):1034-9.
  • [15]Forger NG, De Vries GJ, Breedlove SM. Sexual differentiation of brain and behavior. In: Plant TM, Zelenik AJ editors. Knobil and Neill’s physiology of reproduction, Fourth Edition. Amsterdam, Elsevier; 2015. p. 2109–2155
  • [16]De Vries GJ. Sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology. 2004; 145(3):1063-8.
  • [17]de Vries GJ, Södersten P. Sex differences in the brain: the relation between structure and function. Horm Behav. 2009; 55(5):589-96.
  • [18]Yuan M, Siegel C, Zeng Z, Li J, Liu F, McCullough LD. Sex differences in the response to activation of the poly (ADP-ribose) polymerase pathway after experimental stroke. Exp Neurol. 2009; 217(1):210-8.
  • [19]Hagberg H, Wilson MA, Matsushita H, Zhu CL, Lange M, Gustavsson M et al.. PARP-1 gene disruption in mice preferentially protects males from perinatal brain injury. J Neurochem. 2004; 90(5):1068-75.
  • [20]Csankovszki G, Nagy A, Jaenisch R. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol. 2001; 153(4):773-83.
  • [21]Yang F, Deng X, Ma W, Berletch JB, Rabaia N, Wei G, et al. The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol. 2015;16.
  • [22]Wijchers PJ, Festenstein RJ. Epigenetic regulation of autosomal gene expression by sex chromosomes. Trends Genet. 2011; 27(4):132-40.
  • [23]Arnold AP. The end of gonad-centric sex determination in mammals. Trends Genet. 2012; 28(2):55-61.
  • [24]Mode A, Gustafsson JA. Sex and the liver - a journey through five decades. Drug Metab Rev. 2006; 38(1–2):197-207.
  • [25]Waxman DJ, Holloway MG. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol. 2009; 76(2):215-28.
  • [26]Arnold AP. Genetically triggered sexual differentiation of brain and behavior. Horm Behav. 1996; 30(4):495-505.
  • [27]Arnold AP. The organizational-activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Horm Behav. 2009; 55(5):570-8.
  • [28]Arnold AP, Chen XQ. What does the “four core genotypes” mouse model tell us about sex differences in the brain and other tissues? Front Neuroendocrinol. 2009; 30(1):1-9.
  • [29]De Vries GJ, Rissman EF, Simerly RB, Yang LY, Scordalakes EM, Auger CJ et al.. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J Neurosci. 2002; 22(20):9005-14.
  • [30]DonCarlos LL, Handa RJ. Developmental profile of estrogen receptor mRNA in the preoptic area of male and female neonatal rats. Brain Res Dev Brain Res. 1994; 79(2):283-9.
  • [31]Vito CC, Baum MJ, Bloom C, Fox TO. Androgen and estrogen receptors in perinatal ferret brain. Jo Neurosci. 1985; 5(2):268-74.
  • [32]Vito CC, Fox TO. Androgen and estrogen receptors in embryonic and neonatal rat brain. Brain Res. 1981; 254(1):97-110.
  • [33]Friedman WJ, McEwen BS, Toran-Allerand CD, Gerlach JL. Perinatal development of hypothalamic and cortical estrogen receptors in mouse brain: methodological aspects. Brain Res. 1983; 313(1):19-27.
  • [34]McAbee MD, DonCarlos LL. Ontogeny of region-specific sex differences in androgen receptor messenger ribonucleic acid expression in the rat forebrain. Endocrinology. 1998; 139(4):1738-45.
  • [35]Barraclough CA, Gorski RA. Evidence that the hypothalamus is responsible for androgen-induced sterility in the female rat. Endocrinology. 1961; 68:68-79.
  • [36]Hayashi S, Gorski RA. Critical exposure time for androgenization by intracranial crystals of testosterone propionate in neonatal female rats. Endocrinology. 1974; 94(4):1161-7.
  • [37]Meaney MJ, McEwen BS. Testosterone implants into the amygdala during the neonatal-period masculinize the social play of juvenile female rats. Brain Res. 1986; 398(2):324-8.
  • [38]Holman SD, Hutchison JB. Effects of intracranial androgen on the development of masculine ultrasonic vocalizations in the Mongolian gerbil (Meriones unguiculatus). J Endocrinol. 1985; 107(3):355-64.
  • [39]McCarthy MM, Schlenker EH, Pfaff DW. Enduring consequences of neonatal treatment with antisense oligodeoxynucleotides to estrogen-receptor messenger-ribonucleic-acid on sexual-differentiation of rat-brain. Endocrinology. 1993; 133(2):433-9.
  • [40]Hutton LA, Gu GB, Simerly RB. Development of a sexually dimorphic projection from the bed nuclei of the stria terminalis to the anteroventral periventricular nucleus in the rat. J Neurosci. 1998; 18(8):3003-13.
  • [41]Ibanez MA, Gu GB, Simerly RB. Target-dependent sexual differentiation of a limbic-hypothalamic neural pathway. J Neurosci. 2001; 21(15):5652-9.
  • [42]Cunha GR, Lung B. The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J Exp Zool. 1978; 205(2):181-93.
  • [43]Drews U, Drews U. Regression of mouse mammary gland anlagen in recombinants of Tfm and wild-type tissues: testosterone acts via the mesenchyme. Cell. 1977; 10(3):401-4.
  • [44]Breedlove SM, Arnold AP. Hormone accumulation in a sexually dimorphic motor nucleus of the rat spinal cord. Science. 1980; 210(4469):564-6.
  • [45]Forger NG, Breedlove SM. Sexual dimorphism in human and canine spinal cord: role of early androgen. Proc Natl Acad Sci U S A. 1986; 83(19):7527-31.
  • [46]Wee BEF, Clemens LG. Characteristics of the spinal nucleus of the bulbocavernosus are influenced by genotype in the house mouse. Brain Res. 1987; 424(2):305-10.
  • [47]Ueyama T, Mizuno N, Takahashi O, Nomura S, Arakawa H, Matsushima R. Central distribution of efferent and afferent components of the pudendal nerve in macaque monkeys. J Comp Neurol. 1985; 232(4):548-56.
  • [48]Ulibarri C, Popper P, Micevych PE. Motoneurons dorsolateral to the central canal innervate perineal muscles in the Mongolian gerbil. J Comp Neurol. 1995; 356(2):225-37.
  • [49]Forger NG, Frank LG, Breedlove SM, Glickman SE. Sexual dimorphism of perineal muscles and motoneurons in spotted hyenas. J Comp Neurol. 1996; 375(2):333-43.
  • [50]Breedlove SM, Arnold AP. Sexually dimorphic motor nucleus in the rat lumbar spinal cord: response to adult hormone manipulation, absence in androgen-insensitive rats. Brain Res. 1981; 225(2):297-307.
  • [51]Breedlove SM, Arnold AP. Hormonal-control of a developing neuromuscular system.2. Sensitive periods for the androgen-induced masculinization of the rat spinal nucleus of the bulbocavernosus. J Neurosci. 1983; 3(2):424-32.
  • [52]Jordan CL, Padgett B, Hershey J, Prins G, Arnold A. Ontogeny of androgen receptor immunoreactivity in lumbar motoneurons and in the sexually dimorphic levator ani muscle of male rats. J Comp Neurol. 1997; 379(1):88-98.
  • [53]Freeman LM, Watson NV, Breedlove SM. Androgen spares androgen-insensitive motoneurons from apoptosis in the spinal nucleus of the bulbocavernosus in rats. Horm Behav. 1996; 30(4):424-33.
  • [54]Fishman RB, Breedlove SM. Local perineal implants of anti-androgen block masculinization of the spinal nucleus of the bulbocavernosus. Brain Res Dev Brain Res. 1992; 70(2):283-6.
  • [55]Sengelaub DR, Forger NG. The spinal nucleus of the bulbocavernosus: firsts in androgen-dependent neural sex differences. Horm Behav. 2008; 53(5):596-612.
  • [56]Jacob DA, Bengston CL, Forger NG. Effects of Bax gene deletion on muscle and motoneuron degeneration in a sexually dimorphic neuromuscular system. J Neurosci. 2005; 25(23):5638-44.
  • [57]Forger NG, Roberts SL, Wong V, Breedlove SM. Ciliary neurotrophic factor maintains motoneurons and their target muscles in developing rats. J Neurosci. 1993; 13(11):4720-6.
  • [58]Niel L, Shah AH, Lewis GA, Mo K, Chatterjee D, Fernando SM et al.. Sexual differentiation of the spinal nucleus of the bulbocavernosus is not mediated solely by androgen receptors in muscle fibers. Endocrinology. 2009; 150(7):3207-13.
  • [59]Rand MN, Breedlove SM. Androgen alters the dendritic arbors of SNB motoneurons by acting upon their target muscles. J Neurosci. 1995; 15(6):4408-16.
  • [60]Huguenard AL, Fernando SM, Monks DA, Sengelaub DR. Overexpression of androgen receptors in target musculature confers androgen sensitivity to motoneuron dendrites. Endocrinology. 2011; 152(2):639-50.
  • [61]Monks DA, Vanston CM, Watson NV. Direct androgenic regulation of calcitonin gene-related peptide expression in motoneurons of rats with mosaic androgen insensitivity. J Neurosci. 1999; 19(13):5597-601.
  • [62]Watson NV, Freeman LM, Breedlove SM. Neuronal size in the spinal nucleus of the bulbocavernosus: direct modulation by androgen in rats with mosaic androgen insensitivity. J Neurosci. 2001; 21(3):1062-6.
  • [63]Swift-Gallant A, Niel L, Monks DA. Turning sex inside-out: peripheral contributions to sexual differentiation of the central nervous system. Biol Sex Differ. 2012;3.
  • [64]de Groat WC, Nadelhaft I, Milne RJ, Booth AM, Morgan C, Thor K. Organization of the sacral parasympathetic reflex pathways to the urinary bladder and large intestine. J Auton Nerv Syst. 1981; 3(2–4):135-60.
  • [65]Greenwood D, Coggeshall RE, Hulsebosch CE. Sexual dimorphism in the numbers of neurons in the pelvic ganglia of adult rats. Brain Res. 1985; 340(1):160-2.
  • [66]Suzuki Y, Arai Y. Laterality associated with sexual dimorphism in the volume of the mouse hypogastric ganglion. Exp Neurol. 1986; 94(1):241-6.
  • [67]McLachlan EM. The components of the hypogastric nerve in male and female guinea-pigs. J Auton Nerv Syst. 1985; 13(4):327-42.
  • [68]McKenna KE, Nadelhaft I. The organization of the pudendal nerve in the male and female rat. J Comp Neurol. 1986; 248(4):532-49.
  • [69]Mills AC, Sengelaub DR. Sexually dimorphic neuron number in lumbosacral dorsal-root ganglia of the rat - development and steroid regulation. J Neurobiol. 1993; 24(11):1543-53.
  • [70]Nadelhaft I, McKenna KE. Sexual dimorphism in sympathetic preganglionic neurons of the rat hypogastric nerve. J Comp Neurol. 1987; 256(2):308-15.
  • [71]Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nat Rev Neurosci. 2008; 9(6):453-66.
  • [72]Seseke S, Baudewig J, Kallenberg K, Ringert RH, Seseke F, Dechent P. Gender differences in voluntary micturition control - an fMRI study. Neuroimage. 2008; 43(2):183-91.
  • [73]Yamaguchi K, Kobayashi M, Kato T, Akita K. Origins and distribution of nerves to the female urinary bladder: new anatomical findings in the sex differences. Clin Anat. 2011; 24(7):880-5.
  • [74]Patra PB, Patra S. Sex differences in the physiology and pharmacology of the lower urinary tract. Current Urology. 2012; 6(4):179-88.
  • [75]Ponglowhapan S, Church DB, Khalid M. Differences in the proportion of collagen and muscle in the canine lower urinary tract with regard to gonadal status and gender. Theriogenology. 2008; 70(9):1516-24.
  • [76]Cruz Y, Downie JW. Sexually dimorphic micturition in rats: relationship of perineal muscle activity to voiding pattern. Am J Physiol Regul Integr Comp Physiol. 2005; 289(5):R1307-18.
  • [77]Temml C, Heidler S, Ponholzer A, Madersbacher S. Prevalence of the overactive bladder syndrome by applying the International Continence Society definition. Eur Urol. 2005; 48(4):622-7.
  • [78]Sekido N, Hinotsu S, Kawai K, Shimazui T, Akaza H. How many uncomplicated male and female overactive bladder patients reveal detrusor overactivity during urodynamic study? Int J Urol. 2006; 13(10):1276-9.
  • [79]Özkan S, Durukan E, Iseri E, Gürocak S, Maral I, Bumin MA. Prevalence and risk factors of monosymptomatic nocturnal enuresis in Turkish children. Indian J Urol. 2010; 26(2):200.
  • [80]Chiozza M, Bernardinelli L, Caione P, Del Gado R, Ferrara P, Giorgi P et al.. An Italian epidemiological multicentre study of nocturnal enuresis. Br J Urol. 1998; 81(s3):86-9.
  • [81]Jensen MD. Adipose tissue and fatty acid metabolism in humans. J R Soc Med. 2002; 95:3-7.
  • [82]Guerre-Millo M. Adipose tissue hormones. J Endocrinol Investig. 2002; 25(10):855-61.
  • [83]Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001; 60(3):329-39.
  • [84]Simpson ER. Sources of estrogen and their importance. J Steroid Biochem Mol Biol. 2003; 86(3–5):225-30.
  • [85]Bloor ID, Symonds ME. Sexual dimorphism in white and brown adipose tissue with obesity and inflammation. Horm Behav. 2014; 66(1):95-103.
  • [86]Chen X, McClusky R, Chen J, Beaven SW, Tontonoz P, Arnold AP et al.. The number of X chromosomes causes sex differences in adiposity in mice. Plos Genetics. 2012; 8(5):e1002709.
  • [87]Bojesen A, Kristensen K, Birkebaek NH, Fedder J, Mosekilde L, Bennett P et al.. The metabolic syndrome is frequent in Klinefelter’s syndrome and is associated with abdominal obesity and hypogonadism. Diabetes Care. 2006; 29(7):1591-8.
  • [88]Van PL, Bakalov VK, Bondy CA. Rapid communication - monosomy for the X-chromosome is associated with an atherogenic lipid profile. J Clin Endocrinol Metab. 2006; 91(8):2867-70.
  • [89]Adler ES, Hollis JH, Clarke IJ, Grattan DR, Oldfield BJ. Neurochemical characterization and sexual dimorphism of projections from the brain to abdominal and subcutaneous white adipose tissue in the rat. J Neurosci. 2012; 32(45):15913-21.
  • [90]Fliers E, Kreier F, Voshol PJ, Havekes LM, Sauerwein HP, Kalsbeek A et al.. White adipose tissue: getting nervous. J Neuroendocrinol. 2003; 15(11):1005-10.
  • [91]Kottler ML, Dang CD, Salmon R, Counis R, Degrelle H. Effect of testosterone on regulation of the level of sex steroid-binding protein messenger rna in monkey (Macaca fascicularis) liver. J Mol Endocrinol. 1990; 5(3):253-8.
  • [92]Waxman DJ. Regulation of liver-specific steroid metabolizing cytochrome-p450 - cholesterol 7-alpha-hydroxylase, bile-acid 6-beta-hydroxylase, and growth hormone-responsive steroid-hormone hydroxylases. J Steroid Biochem Mol Biol. 1992; 43(8):1055-72.
  • [93]Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L et al.. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006; 16(8):995-1004.
  • [94]Roy AK, Chatterjee B. Sexual dimorphism in the liver. Annu Rev Physiol. 1983; 45:37-50.
  • [95]Greenblatt DJ, Harmatz JS, Singh NN, Steinberg F, Roth T, Moline ML et al.. Gender differences in pharmacokinetics and pharmacodynamics of zolpidem following sublingual administration. J Clin Pharmacol. 2014; 54(3):282-90.
  • [96]FDA News Release, 2013: FDA requiring lower recommended dose for certain sleep drugs containing zolpidem. [http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm334798.htm]. Accessed 3 Aug 2015
  • [97]Rademaker M. Do women have more adverse drug reactions? Am J Clin Dermatol. 2001; 2(6):349-51.
  • [98]Anderson GD. Sex and racial differences in pharmacological response: where is the evidence? Pharmacogenetics, pharmacokinetics, and pharmacodynamics. J Womens Health. 2005; 14(1):19-29.
  • [99]Furman D, Hejblum BP, Simon N, Jojic V, Dekker CL, Thiebaut R et al.. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc Natl Acad Sci U S A. 2014; 111(2):869-74.
  • [100]Mirandola L, Wade R, Verma R, Pena C, Hosiriluck N, Figueroa JA et al.. Sex-driven differences in immunological responses: challenges and opportunities for the immunotherapies of the third millennium. Int Rev Immunol. 2015; 34(2):134-42.
  • [101]Beeson PB. Age and sex associations of 40 autoimmune-diseases. Am J Med. 1994; 96(5):457-62.
  • [102]Whitacre CC, Reingold SC, O’Looney PA, Task Force Gender Multiple Sclerosis A. Biomedicine - a gender cap in autoimmunity. Science. 1999; 283(5406):1277-8.
  • [103]Bouman A, Schipper M, Heineman MJ, Faas MM. Gender difference in the non-specific and specific immune response in humans. Am J Reprod Immunol. 2004; 52(1):19-26.
  • [104]Bale TL. Neuroendocrine and immune influences on the CNS: it’s a matter of sex. Neuron. 2009; 64(1):13-6.
  • [105]Kim SH, Voskuhl RR. Decreased IL-12 production underlies the decreased ability of male lymph node cells to induce experimental autoimmune encephalomyelitis. J Immunol. 1999; 162(9):5561-8.
  • [106]Voskuhl RR, PitchekianHalabi H, MacKenzieGraham A, McFarland HF, Raine CS. Gender differences in autoimmune demyelination in the mouse: implications for multiple sclerosis. Ann Neurol. 1996; 39(6):724-33.
  • [107]Spence RD, Voskuhl RR. Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front Neuroendocrinol. 2012; 33(1):105-15.
  • [108]Smith-Bouvier DL, Divekar AA, Sasidhar M, Du S, Tiwari-Woodruff SK, King JK et al.. A role for sex chromosome complement in the female bias in autoimmune disease. J Exp Med. 2008; 205(5):1099-108.
  • [109]Du S, Itoh N, Askarinam S, Hill H, Arnold AP, Voskuhl RR. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2014; 111(7):2806-11.
  • [110]Voskuhl RR, Gold SM. Sex-related factors in multiple sclerosis susceptibility and progression. Nature Reviews Neurology. 2012; 8(5):255-263.
  • [111]Antulov R, Weinstock-Guttman B, Cox JL, Hussein S, Durfee J, Caiola C et al.. Gender-related differences in MS: a study of conventional and nonconventional MRI measures. Multiple Sclerosis. 2009; 15(3):345-354.
  • [112]Bale TL. Stress sensitivity and the development of affective disorders. Horm Behav. 2006; 50(4):529-33.
  • [113]Altemus M. Sex differences in depression and anxiety disorders: potential biological determinants. Horm Behav. 2006; 50(4):534-8.
  • [114]Maes M, Vanderplanken M, Stevens WJ, Peeters D, Declerck LS, Bridts CH et al.. Leukocytosis, monocytosis and neutrophilia - hallmarks of severe depression. J Psychiatr Res. 1992; 26(2):125-34.
  • [115]Hodes GE, Pfau ML, Leboeuf M, Golden SA, Christoffel DJ, Bregman D et al.. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc Natl Acad Sci U S A. 2014; 111(45):16136-41.
  • [116]Amateau SK, McCarthy MM. Induction of PGE(2) by estradiol mediates developmental masculinization of sex behavior. Nat Neurosci. 2004; 7(6):643-50.
  • [117]Lenz KM, Nugent BM, Haliyur R, McCarthy MM. Microglia are essential to masculinization of brain and behavior. J Neurosci. 2013; 33(7):2761-72.
  • [118]Sugiyama MG, Hobson L, Agellon AB, Agellon LB. Visualization of sex-dimorphic changes in the intestinal transcriptome of Fabp2 gene-ablated mice. J Nutrigenet Nutrigenomics. 2012; 5(1):45-55.
  • [119]Steegenga WT, Mischke M, Lute C, Boekschoten MV, Pruis MGM, Lendvai A, et al. Sexually dimorphic characteristics of the small intestine and colon of prepubescent C57BL/6 mice. Biol Sex Differ. 2014;5.
  • [120]Markle JGM, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U et al.. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013; 339(6123):1084-8.
  • [121]de Theije CGM, Koelink PJ, Korte-Bouws GAH, da Silva SL, Korte SM, Olivier B et al.. Intestinal inflammation in a murine model of autism spectrum disorders. Brain Behav Immun. 2014; 37:240-7.
  • [122]de Theije CGM, Wopereis H, Ramadan M, van Eijndthoven T, Lambert J, Knol J et al.. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun. 2014; 37:197-206.
  • [123]Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Mol Psychiatry. 2014; 19(2):146-8.
  • [124]Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012; 13(10):701-12.
  • [125]Liu J, Sharma N, Zheng W, Ji H, Tam H, Wu X et al.. Sex differences in vasopressin V(2) receptor expression and vasopressin-induced antidiuresis. Am J Physiol Renal Physiol. 2011; 300(2):F433-40.
  • [126]Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005; 434(7031):400-4.
  • [127]Juul KV, Bichet DG, Nielsen S, Norgaard JP. The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors. Am J Physiol Renal Physiol. 2014; 306(9):F931-40.
  • [128]Juul KV, Klein BM, Sandstrom R, Erichsen L, Norgaard JP. Gender difference in antidiuretic response to desmopressin. Am J Physiol Renal Physiol. 2011; 300(5):F1116-22.
  • [129]Wagner S, Knechtle B, Knechtle P, Ruest CA, Rosemann T. Higher prevalence of exercise-associated hyponatremia in female than in male open-water ultra-endurance swimmers: the ‘Marathon-Swim’ in Lake Zurich. Eur J Appl Physiol. 2012; 112(3):1095-106.
  • [130]Rosner MH, Kirven J. Exercise-associated hyponatremia. Clin J Am Soc Nephrol. 2007; 2(1):151-61.
  • [131]Siegel AJ, Verbalis JG, Clement S, Mendelson JH, Mello NK, Adner M et al.. Hyponatremia in marathon runners due to inappropriate arginine vasopressin secretion. Am J Med. 2007; 120(5):461.e411-467.
  • [132]Madeira MD, Sousa N, Cadeteleite A, Lieberman AR, Paulabarbosa MM. The supraoptic nucleus of the adult-rat hypothalamus displays marked sexual dimorphism which is dependent on body-weight. Neuroscience. 1993; 52(3):497-513.
  • [133]Taylor PV, Veenema AH, Paul MJ, Bredewold R, Isaacs S, de Vries GJ. Sexually dimorphic effects of a prenatal immune challenge on social play and vasopressin expression in juvenile rats. Biol Sex Differ. 2012;3(1):15–5.
  • [134]Curtis KS, Contreras RJ. Sex differences in electrophysiological and behavioral responses to NaCl taste. Behav Neurosci. 2006; 120(4):917-24.
  • [135]Bartoshuk LM, Duffy VB, Miller IJ. PTC/PROP tasting - anatomy, psychophysics, and sex effects. Physiol Behav. 1994; 56(6):1165-71.
  • [136]Prutkin J, Duffy VB, Etter L, Fast K, Gardner E, Lucchina LA et al.. Genetic variation and inferences about perceived taste intensity in mice and men. Physiol Behav. 2000; 69(1–2):161-73.
  • [137]Kow LM, Pfaff DW. Effects of estrogen treatment on the size of receptive field and response threshold of pudendal nerve in the female rat. Neuroendocrinology. 1973; 13(4):299-313.
  • [138]Riss B, Binder S, Riss P, Kemeter P. Corneal sensitivity during the menstrual cycle. Br J Ophthalmol. 1982; 66(2):123-6.
  • [139]Greenspan JD, Craft RM, LeResche L, Arendt-Nielsen L, Berkley KJ, Fillingim RB et al.. Studying sex and gender differences in pain and analgesia: a consensus report. Pain. 2007; 132:S26-45.
  • [140]Loyd DR, Murphy AZ. The neuroanatomy of sexual dimorphism in opioid analgesia. Exp Neurol. 2014; 259:57-63.
  • [141]Rahn EJ, Iannitti T, Donahue RR, Taylor BK. Sex differences in a mouse model of multiple sclerosis: neuropathic pain behavior in females but not males and protection from neurological deficits during proestrus. Biol Sex Differ. 2014; 5:4.
  • [142]Tonelli SM, Rakel BA, Cooper NA, Angstom WL, Sluka KA. Women with knee osteoarthritis have more pain and poorer function than men, but similar physical activity prior to total knee replacement. Biol Sex Differ. 2011; 2:12.
  • [143]Baum MJ, Keverne EB. Sex difference in attraction thresholds for volatile odors from male and estrous female mouse urine. Horm Behav. 2002; 41(2):213-9.
  • [144]Sorwell KG, Wesson DW, Baum MJ. Sexually dimorphic enhancement by estradiol of male urinary odor detection thresholds in mice. Behav Neurosci. 2008; 122(4):788-93.
  • [145]Halem HA, Baum MJ, Cherry JA. Sex difference and steroid modulation of pheromone-induced immediate early genes in the two zones of the mouse accessory olfactory system. J Neurosci. 2001; 21(7):2474-80.
  • [146]Dey S, Chamero P, Pru JK, Chien MS, Ibarra-Soria X, Spencer KR et al.. Cyclic regulation of sensory perception by a female hormone alters behavior. Cell. 2015; 161(6):1334-44.
  • [147]Jameson KA, Highnote SM, Wasserman LM. Richer color experience in observers with multiple photopigment opsin genes. Psychon Bull Rev. 2001; 8(2):244-61.
  • [148]Rodríguez-Carmona M, Sharpe LT, Harlow JA, Barbur JL. Sex-related differences in chromatic sensitivity. Vis Neurosci. 2008; 25(3):433-40.
  • [149]Sharpe LT, Stockman A, Jagle H, Nathans J. Opsin genes, cone photopigments, color vision, and color blindness. In: Color vision: from genes to perception. Sharpe LT, Gegenfurtner KR, editors. Cambridge University Press, Cambridge; 1999: p.3-52.
  • [150]Arnold AP, Lusis AJ. Understanding the sexome: measuring and reporting sex differences in gene systems. Endocrinology. 2012; 153(6):2551-5.
  • [151]Mao J, Zhang X, Sieli PT, Falduto MT, Torres KE, Rosenfeld CS. Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta. Proc Natl Acad Sci U S A. 2010; 107(12):5557-62.
  • [152]Clifton VL. Sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta. 2010; 31:S33-9.
  • [153]Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ. 2013;4.
  • [154]Mueller BR, Bale TL. Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci. 2008; 28(36):9055-65.
  • [155]Bronson G. Critical periods in human-development. Br J Med Psychol. 1962; 35(2):127.
  • [156]Wang ZM, Heo M, Lee RC, Kotler DP, Withers RT, Heymsfield SB. Muscularity in adult humans: proportion of adipose tissue-free body mass as skeletal muscle. Am J Hum Biol. 2001; 13(5):612-9.
  • [157]Plavcan JM, Ruff CB. Canine size, shape, and bending strength in primates and carnivores. Am J Phys Anthropol. 2008; 136(1):65-84.
  • [158]Zingeser MR, Phoenix CH. Metric characteristics of the canine dental complex in prenatally androgenized female rhesus monkeys (Macaca mulatta). Am J Phys Anthropol. 1978; 49(2):187-92.
  • [159]Heikkinen T, Harila V, Tapanainen JS, Alvesalo L. Masculinization of the eruption pattern of permanent mandibular canines in opposite sex twin girls. Am J Phys Anthropol. 2013; 151(4):566-72.
  • [160]Zarkower D. Somatic sex determination (February 10, 2006). WormBook, ed The C elegans Research Community, WormBook, doi/101895/wormbook1841,. http://www. wormbook.org/chapters/www_somaticsexdeterm/somaticsexdeterm.html webcite
  • [161]Mowrey WR, Bennett JR, Portman DS. Distributed effects of biological sex define sex-typical motor behavior in Caenorhabditis elegans. J Neurosci. 2014; 34(5):1579-91.
  • [162]Chiel HJ, Beer RD. The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci. 1997; 20(12):553-7.
  • [163]Fine C. Delusions of gender: how our minds, society and neurosexism create a difference. W.W. Norton Company, New York; 2010. 2010
  • [164]Moore CL. Maternal contributions to the development of masculine sexual-behavior in laboratory rats. Dev Psychobiol. 1984; 17(4):347-56.
  • [165]Moore CL, Dou H, Juraska JM. Maternal stimulation affects the number of motor neurons in a sexually dimorphic nucleus of the lumbar spinal cord. Brain Res. 1992; 572(1–2):52-6.
  • [166]Lenz KM, Graham MD, Parada M, Fleming AS, Sengelaub DR, Monks DA. Tactile stimulation during artificial rearing influences adult function and morphology in a sexually dimorphic neuromuscular system. Dev Neurobiol. 2008; 68(4):542-57.
  • [167]Bredy TW, Grant RJ, Champagne DL, Meaney MJ. Maternal care influences neuronal survival in the hippocampus of the rat. Eur J Neurosci. 2003; 18(10):2903-9.
  • [168]Liu D, Diorio J, Day JC, Francis DD, Meaney MJ. Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat Neurosci. 2000; 3(8):799-806.
  • [169]Moore CL. Sex differences in urinary odors produced by young laboratory rats (Rattus norvegicus). J Comp Psychol. 1985; 99(3):336-41.
  • [170]Edelmann M, Wolfe C, Scordalakes EM, Rissman EF, Tobet S. Neuronal nitric oxide synthase and calbindin delineate sex differences in the developing hypothalamus and preoptic area. Dev Neurobiol. 2007; 67(10):1371-81.
  • [171]Wallen K. The organizational hypothesis: reflections on the 50th anniversary of the publication of Phoenix, Goy, Gerall, and Young (1959). Horm Behav. 2009; 55(5):561-5.
  • [172]Beach FA. Effects of gonadal hormones on urinary behavior in dogs. Physiol Behav. 1974; 12(6):1005-13.
  • [173]Olsen KL. Induction of male mating behavior in androgen-insensitive (tfm) and Normal (King-Holtzman) male rats: effect of testosterone propionate, estradiol benzoate, and dihydrotestosterone. Horm Behav. 1979; 13(1):66-84.
  • [174]Goy RW, Bercovitch FB, McBrair MC. Behavioral masculinization is independent of genital masculinization in prenatally androgenized female rhesus macaques. Horm Behav. 1988; 22(4):552-71.
  文献评价指标  
  下载次数:19次 浏览次数:32次