期刊论文详细信息
BMC Biotechnology
Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions
Ignacio Poblete-Castro1  Danielle Binger3  Rene Oehlert1  Manfred Rohde2 
[1] Helmholtz Centre for Infection Biology, Microbial Drugs Group, Braunschweig D-38124, Germany
[2] Helmholtz Centre for Infection Biology, Molecular Mechanism of Streptococci Group, Braunschweig D-38124, Germany
[3] Helmholtz Centre for Infection Biology, Systems and Synthetic Biology, Braunschweig D-38124, Germany
关键词: Citrate;    Metabolic engineering;    PHA depolymerase;    Raw glycerol;    mcl-polyhydroxyalkanoates;    Pseudomonas putida strains;   
Others  :  1121354
DOI  :  10.1186/s12896-014-0110-z
 received in 2014-10-08, accepted in 2014-12-11,  发布年份 2014
PDF
【 摘 要 】

Background

Achieving a sustainable society requires, among other things, the use of renewable feedstocks to replace chemicals obtained from petroleum-derived compounds. Crude glycerol synthesized inexpensively as a byproduct of biodiesel production is currently considered a waste product, which can potentially be converted into value-added compounds by bacterial fermentation. This study aimed at evaluating several characterized P. putida strains to produce medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA) using raw glycerol as the only carbon/energy source.

Results

Among all tested strains, P. putida KT2440 most efficiently synthesized mcl-PHA under nitrogen-limiting conditions, amassing more than 34% of its cell dry weight as PHA. Disruption of the PHA depolymerase gene (phaZ) in P. putida KT2440 enhanced the biopolymer titer up to 47% PHA (%wt/wt). The low biomass and PHA titer found in the mutant strain and the wild-type strain KT2440 seems to be triggered by the high production of the side-product citrate during the fermentation process which shows a high yield of 0.6 g/g.

Conclusions

Overall, this work demonstrates the importance of choosing an appropriate microbe for the synthesis of mcl-PHA from waste materials, and a close inspection of the cell metabolism in order to identify undesired compounds that diminish the availability of precursors in the synthesis of biopolymers such as polyhydroxyalkanoates. Future metabolic engineering works should focus on reducing the production of citrate in order to modulate resource allocation in the cell’s metabolism of P. putida, and finally increase the biopolymer production.

【 授权许可】

   
2014 Poblete-Castro et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150212012837726.pdf 1393KB PDF download
Figure 5. 60KB Image download
Figure 4. 28KB Image download
Figure 3. 42KB Image download
Figure 2. 59KB Image download
Figure 1. 18KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Madison LL, Huisman GW: Metabolic engineering of poly(3-Hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 1999, 63(1):21-53.
  • [2]Chen G-Q: A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 2009, 38:2434-2446.
  • [3]Anderson AJ, Dawes EA: Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 1990, 54(4):450-472.
  • [4]Choi J, Lee SY: Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 1999, 51:13-21.
  • [5]Frazzetto G: White biotechnology. EMBO Rep 2003, 4:835-837.
  • [6]Salehizadeh H, Van Loosdrecht MCM: Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv 2004, 22:261-279.
  • [7]Van-Thuoc D, Quillaguamán J, Mamo G, Mattiasson B: Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1. J Appl Microbiol 2008, 104:420-428.
  • [8]Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P: Production of polyhydroxyalkanoates from agricultural waste and surplus materials†. Biomacromolecules 2005, 6:561-565.
  • [9]Serafim L, Lemos P, Albuquerque ME, Reis MM: Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol 2008, 81:615-628.
  • [10]Zinn M, Witholt B, Egli T: Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 2001, 53:5-21.
  • [11]Zinn M, Durner R, Zinn H, Ren Q, Egli T, Witholt B: Growth and accumulation dynamics of poly(3-hydroxyalkanoate) (PHA) in Pseudomonas putida GPo1 cultivated in continuous culture under transient feed conditions. Biotechnol J 2011, 6:1240-1252.
  • [12]Huijberts GN, Eggink G, de Waard P, Huisman GW, Witholt B: Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 1992, 58(2):536-544.
  • [13]Poblete-Castro I, Escapa IF, Jäger C, Puchalka J, Chi Lam C, Schomburg D, Prieto M, Martins dos Santos VA: The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: highlights from a multi-level omics approach. Microb Cell Fact 2012, 11:34.
  • [14]O’Leary ND, O’Connor KE, Ward P, Goff M, Dobson ADW: Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in pseudomonas putida CA-3. Appl Environ Microbiol 2005, 71(8):4380-4387.
  • [15]Cai L, Yuan M-Q, Liu F, Jian J, Chen G-Q: Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442. Bioresour Technol 2009, 100:2265-2270.
  • [16]Poblete-Castro I, Binger D, Rodrigues A, Becker J, Martins Dos Santos VAP, Wittmann C: In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Metab Eng 2013, 15:113-123.
  • [17]Borrero-de Acuña JM, Bielecka A, Häussler S, Schobert M, Jahn M, Wittmann C, Jahn D, Poblete-Castro I: Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida.Microb Cell Fact 2014, 13:88.
  • [18]Sun Z, Ramsay J, Guay M, Ramsay B: Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 2007, 74:69-77.
  • [19]Poblete-Castro I, Rodriguez AL, Lam CMC, Kessler W: Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains. J Microbiol Biotechnol 2014, 24:59-69.
  • [20]Liu W, Chen G-Q: Production and characterization of medium-chain-length polyhydroxyalkanoate with high 3-hydroxytetradecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Appl Microbiol Biotechnol 2007, 76:1153-1159.
  • [21]Sun Z, Ramsay J, Guay M, Ramsay B: Fed-batch production of unsaturated medium-chain-length polyhydroxyalkanoates with controlled composition by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 2009, 82:657-662.
  • [22]Escapa I, Morales V, Martino V, Pollet E, Avérous L, García J, Prieto M: Disruption of β-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Appl Microbiol Biotechnol 2011, 89:1583-1598.
  • [23]Poblete-Castro I, Becker J, Dohnt K, Dos Santos VM, Wittmann C: Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol 2012, 93:2279-2290.
  • [24]Muhr A, Rechberger EM, Salerno A, Reiterer A, Malli K, Strohmeier K, Schober S, Mittelbach M, Koller M: Novel description of mcl-PHA biosynthesis by pseudomonas chlororaphis from animal-derived waste. J Biotechnol 2013, 165:45-51.
  • [25]Kenny S, Runic J, Kaminsky W, Woods T, Babu R, O’Connor K: Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Appl Microbiol Biotechnol 2012, 95:623-633.
  • [26]Fu J, Sharma U, Sparling R, Cicek N, Levin DB: Evaluation of medium-chain-length polyhydroxyalkanoate production by Pseudomonas putida LS46 using biodiesel by-product streams. Can J Microbiol 2014, 60:461-468.
  • [27]Davis R, Kataria R, Cerrone F, Woods T, Kenny S, O’Donovan A, Guzik M, Shaikh H, Duane G, Gupta VK, Tuohy MG, Padamatti RB, Casey E, O’Connor KE: Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresour Technol 2013, 150:202-209.
  • [28]Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, Johnson CW, Chupka G, Strathmann TJ, Pienkos PT, Beckham GT: Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci 2014, 111(33):12013-12018.
  • [29]Almeida JR, Favaro LC, Quirino B: Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste.Biotechnol Biofuels 2012, 5:48.
  • [30]Timmis KN: Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 2002, 4:779-781.
  • [31]Wang Q, Tappel RC, Zhu C, Nomura CT: Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant escherichia coli via inexpensive non-fatty acid feedstocks. Appl Environ Microbiol 2012, 78(2):519-527.
  • [32]Meijnen J-P, Verhoef S, Briedjlal A, de Winde J, Ruijssenaars H: Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy. Appl Microbiol Biotechnol 2011, 90:885-893.
  • [33]Escapa IF, del Cerro C, García JL, Prieto MA: The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol. Environ Microbiol 2013, 15:93-110.
  • [34]Follonier S, Panke S, Zinn M: A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate.Microb Cell Fact 2011, 10:25.
  • [35]De Eugenio LI, Escapa IF, Morales V, Dinjaski N, Galán B, García JL, Prieto MA: The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environ Microbiol 2010, 12:207-221.
  • [36]Ren Q, de Roo G, Witholt B, Zinn M, Thony-Meyer L: Influence of growth stage on activities of polyhydroxyalkanoate (PHA) polymerase and PHA depolymerase in Pseudomonas putida U.BMC Microbiol 2010, 10:254.
  • [37]Solaiman DKY, Ashby RD, Foglia TA: Effect of inactivation of poly(hydroxyalkanoates) depolymerase gene on the properties of poly(hydroxyalkanoates) in Pseudomonas resinovorans. Appl Microbiol Biotechnol 2003, 62:536-543.
  • [38]Arias S, Bassas-Galia M, Molinari G, Timmis KN: Tight coupling of polymerization and depolymerization of polyhydroxyalkanoates ensures efficient management of carbon resources in Pseudomonas putida. Microb Biotechnol 2013, 6:551-563.
  • [39]Fujita Y, Matsuoka H, Hirooka K: Regulation of fatty acid metabolism in bacteria. Mol Microbiol 2007, 66:829-839.
  • [40]Lee IY, Kim MK, Park YH, Lee SY: Regulatory effects of cellular nicotinamide nucleotides and enzyme activities on poly(3-hydroxybutyrate) synthesis in recombinant Escherichia coli. Biotechnol Bioeng 1996, 52:707-712.
  • [41]Sánchez AM, Andrews J, Hussein I, Bennett GN, San K-Y: Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol Prog 2006, 22:420-425.
  • [42]Ochoa-Estopier A, Guillouet SE: D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica. J Biotechnol 2014, 170:35-41.
  • [43]Papagianni M: Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling. Biotechnol Adv 2007, 25:244-263.
  • [44]Kristiansen B, Sinclair CG: Production of citric acid in continuous culture. Biotechnol Bioeng 1979, 21:297-315.
  • [45]Anastassiadis S, Aivasidis A, Wandrey C: Citric acid production by Candida strains under intracellular nitrogen limitation. Appl Microbiol Biotechnol 2002, 60:81-87.
  • [46]Papanikolaou S, Aggelis G: Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 2002, 82:43-49.
  • [47]Ratledge C, Wynn JP: The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. In Adv Appl Microbiol. Volume Volume 51. Edited by Allen I. Laskin JWB and GMGBT-A in AM. Academic Press; 2002, 51:1–52.
  • [48]Daran-Lapujade P, Jansen MLA, Daran J-M, van Gulik W, de Winde JH, Pronk JT: Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae: A CHEMOSTAT CULTURE STUDY. J Biol Chem 2004, 279(10):9125-9138.
  • [49]Canelas AB, van Gulik WM, Heijnen JJ: Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol Bioeng 2008, 100:734-743.
  • [50]Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA: Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 2006, 72(5):3653-3661.
  • [51]Kamzolova S, Lunina J, Morgunov I: Biochemistry of citric acid production from rapeseed oil by Yarrowia lipolytica yeast. J Am Oil Chem Soc 2011, 88:1965-1976.
  • [52]Rymowicz W, Fatykhova A, Kamzolova S, Rywińska A, Morgunov I: Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes. Appl Microbiol Biotechnol 2010, 87:971-979.
  • [53]Lotfy WA, Ghanem KM, El-Helow ER: Citric acid production by a novel Aspergillus niger isolate: I. Mutagenesis and cost reduction studies. Bioresour Technol 2007, 98:3464-3469.
  • [54]Cullen D: The genome of an industrial workhorse. Nat Biotechnol 2007, 25:189-190.
  • [55]Bagdasarian M, Lurz R, Rückert B, Franklin FCH, Bagdasarian MM, Frey J, Timmis KN: Specific-purpose plasmid cloning vectors II. Broad host range, high copy number, RSF 1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 1981, 16:237-247.
  • [56]Hartmans S, Smits JP, van der Werf MJ, Volkering F, de Bont JAM: Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading xanthobacter strain 124X. Appl Environ Microbiol 1989, 55(11):2850-2855.
  • [57]Martínez-García E, de Lorenzo V: Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 2011, 13:2702-2716.
  • [58]Shevchuk NA, Bryksin AV, Nusinovich YA, Cabello FC, Sutherland M, Ladisch S: Construction of long DNA molecules using long PCR‐based fusion of several fragments simultaneously. Nucleic Acids Res 2004, 32(2):e19-e19.
  • [59]De Lorenzo V, Timmis KN: [31] Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. In Bact Pathog Part A Identif Regul Virulence Factors. Volume Volume 235. Edited by Virginia L. Clark PMBBT-M in E. Academic Press; 1994:386–405.
  文献评价指标  
  下载次数:20次 浏览次数:6次