| Biotechnology for Biofuels | |
| Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste | |
| João R M Almeida1  Léia C L Fávaro1  Betania F Quirino2  | |
| [1] Embrapa-Agroenergy, Parque Estação Biológica S/N, Av. W3 Norte (final), 70770-901, Brasília, DF, Brazil | |
| [2] Universidade Católica de Brasília, Genomic Sciences and Biotechnology Program, 70790-160, Brasília, DF, Brazil | |
| 关键词: Biodiesel; Metabolic engineering; Biofuels; Fermentation; Glycerol; | |
| Others : 798265 DOI : 10.1186/1754-6834-5-48 |
|
| received in 2012-03-26, accepted in 2012-06-29, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a “waste-stream” instead of a valuable “coproduct”. The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others) by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive.
【 授权许可】
2012 Almeida et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140706113547327.pdf | 463KB | ||
| Figure 5. | 25KB | Image | |
| Figure 2 . | 58KB | Image | |
| Figure 1 . | 90KB | Image |
【 图 表 】
Figure 1 .
Figure 2 .
Figure 5.
【 参考文献 】
- [1]Zhang Y-HP: What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochem 2011, 46(11):2091-2110.
- [2]Yazdani SS, Gonzalez R: Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotech 2007, 18:213-219.
- [3]O’Connor D: Report T39-T3. Biodiesel GHG emissions, pas, present, and future . A report to IEA Bioenergy Task 39. In Commercializing Liquid Biofuels from Biomass. International Energy Agency (IEA), ; 2011. www.ieabioenergy.com/Liblinks.aspx webcite
- [4]ANP: Agência Nacional do Petróleo, Gás natural e Biocombustíveis. Boletim mensal de biodiesel 2011. Junho: http://www.anp.gov.br/?pg=59236&m=&t59231=&t59232=&t59233=&t59234=&ar=&ps=&cachebust=1342442475715. webcite
- [5]Rywinska A, Rymowicz W: High-yield production of citric acid by Yarrowia lipolytica on glycerol in repeated-batch bioreactors. J Ind Microbiol Biot 2010, 37:431-435.
- [6]Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G: Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: Production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenerg 2008, 32:60-71.
- [7]Koutinas AA, Wang RH, Webb C: The biochemurgist - Bioconversion of agricultural raw materials for chemical production. Biofuel Bioprod Bior 2007, 1:24-38.
- [8]Liu HJ, Xu YZ, Zheng ZM, Liu DH: 1,3-Propanediol and its copolymers: Research, development and industrialization. Biotechnol J 2010, 5:1137-1148.
- [9]NNDCC: Biochemical Opportunities in the United Kingdom,. 2008. www.nnfcc.co.uk/publications webcite
- [10]Celinska E: Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol Adv 2010, 28:519-530.
- [11]Biebl H, Menzel K, Zeng AP, Deckwer WD: Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 1999, 52:289-297.
- [12]Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL: Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Lett 2006, 28:1755-1759.
- [13]Chen X, Zhang DJ, Qi WT, Gao SJ, Xiu ZL, Xu P: Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Appl Microbiol Biotechnol 2003, 63:143-146.
- [14]Lin RH, Liu HJ, Hao J, Cheng K, Liu DH: Enhancement of 1,3-propanediol production by Klebsiella pneumoniae with fumarate addition. Biotechnol Lett 2005, 27:1755-1759.
- [15]Hong WK, Kim CH, Heo SY, Luo LH, Oh BR, Rairakhwada D, Seo JW: 1,3-Propandiol production by engineered Hansenula polymorpha expressing dha genes from Klebsiella pneumoniae. Bioprocess Biosyst Eng 2011, 34:231-236.
- [16]Tang XM, Tan YS, Zhu H, Zhao K, Shen W: Microbial Conversion of Glycerol to 1,3-Propanediol by an Engineered Strain of Escherichia coli. Appl Environ Microb 2009, 75:1628-1634.
- [17]Xu YZ, Guo NN, Zheng ZM, Ou XJ, Liu HJ, Liu DH: Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae. Biotechnol Bioeng 2009, 104:965-972.
- [18]Liu HJ, Zhang DJ, Xu YH, Mu Y, Sun YQ, Xiu ZL: Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale. Biotechnol Lett 2007, 29:1281-1285.
- [19]Petrov K, Petrova P: High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol 2009, 84:659-665.
- [20]Petrov K, Petrova P: Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl Microbiol Biotechnol 2010, 87:943-949.
- [21]Durnin G, Clomburg J, Yeates Z, Alvarez PJJ, Zygourakis K, Campbell P, Gonzalez R: Understanding and Harnessing the Microaerobic Metabolism of Glycerol in Escherichia coli. Biotechnol Bioeng 2009, 103:148-161.
- [22]Taconi KA, Venkataramanan KP, Johnson DT: Growth and Solvent Production by Clostridium pasteurianum ATCC (R) 6013 (TM) Utilizing Biodiesel-Derived Crude Glycerol as the Sole Carbon Source. Environ Prog Sustain Energy 2009, 28:100-110.
- [23]Hu ZC, Liu ZQ, Zheng YG, Shen YC: Production of 1,3-Dihydroxyacetone from Glycerol by Gluconobacter oxydans ZJB09112. J Microbiol Biotechn 2010, 20:340-345.
- [24]Habe H, Shimada Y, Yakushi T, Hattori H, Ano Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H, et al.: Microbial Production of Glyceric Acid, an Organic Acid That Can Be Mass Produced from Glycerol. Appl Environ Microb 2009, 75:7760-7766.
- [25]Hong AA, Cheng KK, Peng F, Zhou S, Sun Y, Liu CM, Liu DH: Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid. J Chem Technol Biot 2009, 84:1576-1581.
- [26]Mazumdar S, Clomburg JM, Gonzalez R: Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol. Appl Environ Microb 2010, 76:4327-4336.
- [27]Blankschien MD, Clomburg JM, Gonzalez R: Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab Eng 2010, 12:409-419.
- [28]Yuzbashev TV, Yuzbasheva EY, Sobolevskaya TI, Laptev IA, Vybornaya TV, Larina AS, Matsui K, Fukui K, Sineoky SP: Production of Succinic Acid at Low pH by a Recombinant Strain of the Aerobic Yeast Yarrowia lipolytica. Biotechnol Bioeng 2010, 107:673-682.
- [29]Rymowicz W, Fatykhova AR, Kamzolova SV, Rywinska A, Morgunov IG: Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes. Appl Microbiol Biotechnol 2010, 87:971-979.
- [30]Andre A, Diamantopoulou P, Philippoussis A, Sarris D, Komaitis M, Papanikolaou S: Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crop Prod 2010, 31:407-416.
- [31]Khan A, Bhide A, Gadre R: Mannitol production from glycerol by resting cells of Candida magnoliae. Bioresour Technol 2009, 100:4911-4913.
- [32]Rymowicz W, Rywinska A, Marcinkiewicz M: High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol Lett 2009, 31:377-380.
- [33]Koganti S, Kuo TM, Kurtzman CP, Smith N, Ju LK: Production of arabitol from glycerol: strain screening and study of factors affecting production yield. Appl Microbiol Biotechnol 2011, 90:257-267.
- [34]Nikel PI, Pettinari MJ, Galvagno MA, Mendez BS: Poly(3-hydroxybutyrate) synthesis from glycerol by a recombinant Escherichia coli arcA mutant in fed-batch microaerobic cultures. Appl Microbiol Biotechnol 2008, 77:1337-1343.
- [35]Ibrahim MHA, Steinbuchel A: Poly(3-Hydroxybutyrate) Production from Glycerol by Zobellella denitrificans MW1 via High-Cell-Density Fed-Batch Fermentation and Simplified Solvent Extraction. Appl Environ Microb 2009, 75:6222-6231.
- [36]Syu MJ: Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 2001, 55:10-18.
- [37]Ji XJ, Huang H, Ouyang PK: Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnol Adv 2011, 29:351-364.
- [38]Renewable Fuels Association, Industry Statistics, Ethanol Industry, Overview: World Fuel Ethanol Production,. http://ethanolrfa.org/pages/World-Fuel-Ethanol-Production webcite
- [39]Almeida JRM, Runquist D, Nogue VSI, Liden G, Gorwa-Grauslund MF: Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J 2011, 6:286-299.
- [40]Geddes CC, Nieves IU, Ingram LO: Advances in ethanol production. Curr Opin Biotech 2011, 22:312-319.
- [41]Cheng KK, Zhang JA, Liu DH, Sun Y, Liu HJ, Yang MD, Xu JM: Pilot-scale production of 1,3-propanediol using Klebsiella pneumoniae. Process Biochem 2007, 42:740-744.
- [42]Dharmadi Y, Murarka A, Gonzalez R: Anaerobic fermentation of glycerol by Escherichia coli: A new platform for metabolic engineering. Biotechnol Bioeng 2006, 94:821-829.
- [43]Yazdani SS, Gonzalez R: Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 2008, 10:340-351.
- [44]Hong WK, Kim CH, Heo SY, Luo L, Oh BR, Seo JW: Enhanced production of ethanol from glycerol by engineered Hansenula polymorpha expressing pyruvate decarboxylase and aldehyde dehydrogenase genes from Zymomonas mobilis. Biotechnol Lett 2010, 32:1077-1082.
- [45]Harvey BG, Meylemans HA: The role of butanol in the development of sustainable fuel technologies. J Chem Technol Biot 2011, 86:2-9.
- [46]Biebl H: Fermentation of glycerol by Clostridium pasteurianum - batch and continuous culture studies. J Ind Microbiol Biot 2001, 27:18-26.
- [47]Hekmat D, Bauer R, Fricke J: Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst Eng 2003, 26:109-116.
- [48]Bauer R, Katsikis N, Varga S, Hekmat D: Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process. Bioprocess Biosyst Eng 2005, 28:37-43.
- [49]Habe H, Fukuoka T, Morita T, Kitamoto D, Yakushi T, Matsushita K, Sakaki K: Disruption of the Membrane-Bound Alcohol Dehydrogenase-Encoding Gene Improved Glycerol Use and Dihydroxyacetone Productivity in Gluconobacter oxydans. Biosci Biotech Bioch 2010, 74:1391-1395.
- [50]Habe H, Fukuoka T, Kitamoto D, Sakaki K: Biotechnological production of D-glyceric acid and its application. Appl Microbiol Biotechnol 2009, 84:445-452.
- [51]Habe H, Shimada Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H, Yakushi T, Matsushita K, Sakaki K: Use of a Gluconobacter frateurii Mutant to Prevent Dihydroxyacetone Accumulation during Glyceric Acid Production from Glycerol. Biosci Biotech Bioch 2010, 74:2330-2332.
- [52]Sodergard A, Stolt M: Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 2002, 27:1123-1163.
- [53]Dien BS, Nichols NN, Bothast RJ: Recombinant Escherichia coli engineered for production of L-lactic acid from hexose and pentose sugars. J Ind Microbiol Biot 2001, 27:259-264.
- [54]Sauer M, Porro D, Mattanovich D, Branduardi P: Microbial production of organic acids: expanding the markets. Trends Biotechnol 2008, 26:100-108.
- [55]Hofvendahl K, Hahn-Hagerdal B: Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Tech 2000, 26:87-107.
- [56]Cheng KK, Zhang JA, Liu DH, Sun Y, Yang MD, Xu JM: Production of 1,3-propanediol by Klebsiella pneumoniae from glycerol broth. Biotechnol Lett 2006, 28:1817-1821.
- [57]El-Ziney MG, Arneborg N, Uyttendaele M, Debevere J, Jakobsen M: Characterization of growth and metabolite production of Lactobacillus reuteri during glucose/glycerol cofermentation in batch and continuous cultures. Biotechnol Lett 1998, 20:913-916.
- [58]Payot T, Chemaly Z, Fick M: Lactic acid production by Bacillus coagulans - Kinetic studies and optimization of culture medium for batch and continuous fermentations. Enzyme Microb Tech 1999, 24:191-199.
- [59]Bai DM, Jia MZ, Zhao XM, Ban R, Shen F, Li XG, Xu SM: L(+)-lactic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor. Chem Eng Sci 2003, 58:785-791.
- [60]Lee PC, Lee WG, Lee SY, Chang HN: Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol Bioeng 2001, 72:41-48.
- [61]Zhang X, Shanmugam KT, Ingram LO: Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl Environ Microb 2010, 76:2397-2401.
- [62]Zhang X, Jantama K, Moore JC, Jarboe LR, Shanmugam KT, Ingram LO: Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci U S A 2009, 106:20180-20185.
- [63]Arikawa Y, Kuroyanagi T, Shimosaka M, Muratsubaki H, Enomoto K, Kodaira R, Okazaki M: Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae. J Biosci Bioeng 1999, 87:28-36.
- [64]Saliola M, Bartoccioni PC, De Maria I, Lodi T, Falcone C: The deletion of the succinate dehydrogenase gene KlSDH1 in Kluyveromyces lactis does not lead to respiratory deficiency. Eukaryot Cell 2004, 3:589-597.
- [65]Anastassiadis S, Morgunov IG, Kamzolova SV, Finogenova TV: Citric acid production patent review. Recent Pat Biotechnol 2008, 2:107-123.
- [66]Amaral PFF, Ferreira TF, Fontes GC, Coelho MAZ: Glycerol valorization: New biotechnological routes. Food Bioprod Process 2009, 87:179-186.
- [67]Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I: Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol 2002, 92:737-744.
- [68]Imandi SB, Bandaru VR, Somalanka SR, Garapati HR: Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design. Enzyme Microb Tech 2007, 40:1367-1372.
- [69]Levinson WE, Kurtzman CP, Kuo TM: Characterization of Yarrowia lipolytica and related species for citric acid production from glycerol. Enzyme Microb Tech 2007, 41:292-295.
- [70]Rymowicz W, Rywinska A, Zarowska B, Juszczyk P: Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chem Pap-Chem Zvesti 2006, 60:391-394.
- [71]Rywinska A, Rymowicz W, Zarowska B, Wojtatowicz M: Biosynthesis of Citric Acid from Glycerol by Acetate Mutants of Yarrowia lipolytica in Fed-Batch Fermentation. Food Technol Biotech 2009, 47:1-6.
- [72]Musial I, Cibis E, Rymowicz W: Designing a process of kaolin bleaching in an oxalic acid enriched medium by Aspergillus niger cultivated on biodiesel-derived waste composed of glycerol and fatty acids. Appl Clay Sci 2011, 52:277-284.
- [73]Polyols - A global strategic business report,. http://www.prweb.com/releases/polyols/sugar_alcohols_replacers/prweb8061551.htm webcite
- [74]Akinterinwa O, Khankal R, Cirino PC: Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotech 2008, 19:461-467.
- [75]Parajo JC, Dominguez H, Dominguez JM: Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol 1998, 65:191-201.
- [76]Silveira MM, Jonas R: The biotechnological production of sorbitol. Appl Microbiol Biotechnol 2002, 59:400-408.
- [77]Song SH, Vieille C: Recent advances in the biological production of mannitol. Appl Microbiol Biotechnol 2009, 84:55-62.
- [78]Saha BC, Racine FM: Biotechnological production of mannitol and its applications. Appl Microbiol Biotechnol 2011, 89:879-891.
- [79]Moon HJ, Jeya M, Kim IW, Lee JK: Biotechnological production of erythritol and its applications. Appl Microbiol Biotechnol 2010, 86:1017-1025.
- [80]Soetaert W, Vanhooren PT, Vandamme EJ: Production of mannitol by fermentation. Methods in Biotechnology 1999, 10:261-275.
- [81]Bozell J, Petersen G: Technology development for the production of biobased products from biorefinery carbohydrate – US Department of Energy’s ‘Top 10’ revisited. Green Chem 2010, 12:539-554.
- [82]Huber GW, Dumesic JA: An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal Today 2006, 111:119-132.
- [83]Serrano-Ruiz JC, Luque R, Sepulveda-Escribano A: Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem Soc Rev 2011, 40:5266-5281.
- [84]Werpy T, Petersen G: Top value added chemicals from biomass: results of screening for potential candidates from sugars and synthesis gas. vol. 1: National Renewable Energy Lab, Golden, 2004. http://www.osti.gov/bridge webcite
- [85]Gallezot P: Conversion of biomass to selected chemical products. Chem Soc Rev 2011, 41(4):1538-1558.
- [86]Erickson B: Nelson. Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J, Winters P; 2011.
- [87]Kusserow B, Schimpf S, Claus P: Hydrogenation of glucose to sorbitol over nickel and ruthenium catalysts. Adv Synth Catal 2003, 345:289-299.
- [88]Prakasham R, Rao R, Hobbs P: Current trends in biotechnological production of xylitol and future prospects. Current Trends in Biotechnology and Pharmacy 2009, 3:8-36.
- [89]Monedero V, Perez-Martinez G, Yebra MJ: Perspectives of engineering lactic acid bacteria for biotechnological polyol production. Appl Microbiol Biotechnol 2010, 86:1003-1015.
- [90]Yu C, Cao YJ, Zou HB, Xian M: Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol 2011, 89:573-583.
- [91]Kiviharju K, Nyyssola A: Contributions of biotechnology to the production of mannitol. Recent Pat Biotechnol 2008, 2:73-78.
- [92]Butanediol price report,. http://www.icispricing.com webcite
- [93]NNFCC: Ethanol - Renewable Chemicals Factsheet,. 2010. www.nnfcc.co.uk/publications webcite
- [94]NNDCC: Lactic Acid - Renewable Chemicals Factsheet,. 2011. www.nnfcc.co.uk/publications webcite
- [95]NNFCC: Succinic Acid - Renewable Chemicals Factsheet. 2010.
- [96]Frost, Sullivan: Strategic analysis of the erythritol market. In Strategic Analysis of the US Polyols Markets, Edited by Sullivan F. 2007. http://www.frost.com/prod/servlet/frost-home.pag webcite
- [97]Taylor P, Fotheringham I, Wymer N, Saha B, Demirjian D, Sakaibara Y, Racine FM: Methods for Production of Xylitol in Microorganisms. In USPTO, US7,960,152-B2. Biotechnology Research Development Corporation, USA; 2011. www.uspto.gov webcite
- [98]Song KH, Baek H, Park SM, Hyun HH, Jung SR, Kim SY, Lee JK, Song JY: Candida magnoliae producing mannitol and fermentation method for producing mannitol. In USPTO, US6,528,290-B1. , USA; 2003. www.uspto.gov
- [99]Dobson R, Gray V, Rumbold K: Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biot 2012, 39:217-226.
- [100]Onishi H, Suzuki T: Microbial Production of D-Mannitol and D-Fructose from Glycerol. Biotechnol Bioeng 1970, 12:913.
- [101]Andre A, Chatzifragkou A, Diamantopoulou P, Sarris D, Philippoussis A, Galiotou-Panayotou M, Komaitis M, Papanikolaou S: Biotechnological conversions of bio-diesel-derived crude glycerol by Yarrowia lipolytica strains. Eng Life Sci 2009, 9:468-478.
- [102]Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S: Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 2011, 36:1097-1108.
- [103]ZuChem gears up for first mannitol sweetener,. http://www.foodnavigator-usa.com/Business/ZuChem-gears-up-for-first-mannitol-sweetener webcite
- [104]Savergave LS, Gadre RV, Vaidya BK, Narayanan K: Strain improvement and statistical media optimization for enhanced erythritol production with minimal by-products from Candida magnoliae mutant R23. Biochem Eng J 2011, 55:92-100.
- [105]Rymowicz W, Rywinska A, Gladkowski W: Simultaneous production of citric acid and erythritol from crude glycerol by Yarrowia lipolytica Wratislavia K1. Chem Pap 2008, 62:239-246.
- [106]Jeya M, Lee KM, Tiwari MK, Kim JS, Gunasekaran P, Kim SY, Kim IW, Lee JK: Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level. Appl Microbiol Biotechnol 2009, 83:225-231.
- [107]Suzuki S, Sugiyama M, Mihara Y, Hashiguchi K, Yokozeki K: Novel enzymatic method for the production of xylitol from D-arabitol by Gluconobacter oxydans. Biosci Biotech Bioch 2002, 66:2614-2620.
- [108]Sugiyama M, Suzuki S, Tonouchi N, Yokozeki K: Cloning of the xylitol dehydrogenase gene from Gluconobacter oxydans and improved production of xylitol from D-arabitol. Biosci Biotech Bioch 2003, 67:584-591.
- [109]Koganti S, Loman A, Ju LK: Production and purification of arabitol from biodiesel byproduct glycerol. In Abstracts of the 102nd AOCS Annual Meeting & Expo. American oil chemists’s society (AOCS), Cincinnati, Ohio, USA; 2011.
- [110]Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S: Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - A review. Biotechnol Adv 2007, 25:148-175.
- [111]Posada JA, Naranjo JM, Lopez JA, Higuita JC, Cardona CA: Design and analysis of poly-3-hydroxybutyrate production processes from crude glycerol. Process Biochem 2011, 46:310-317.
- [112]Dawes EA, Senior PJ: The role and regulation of energy reserve polymers in micro-organisms. Adv Microb Physiol 1973, 10:135-266.
- [113]Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P: Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 2005, 6:561-565.
- [114]Ibrahim MHA, Steinbuchel A: Zobellella denitrificans strain MW1, a newly isolated bacterium suitable for poly(3-hydroxybutyrate) production from glycerol. J Appl Microbiol 2010, 108:214-225.
- [115]Grothe E, Moo-Young M, Chisti Y: Fermentation optimization for the production of poly(beta-hydroxybutyric acid) microbial thermoplastic. Enzyme Microb Tech 1999, 25:132-141.
- [116]de Almeida A, Giordano AM, Nikel PI, Pettinari MJ: Effects of Aeration on the Synthesis of Poly(3-Hydroxybutyrate) from Glycerol and Glucose in Recombinant Escherichia coli. Appl Environ Microb 2010, 76:2036-2040.
- [117]Habe H, Fukuoka T, Kitamoto D, Sakaki K: Glycerol Conversion to D-Xylulose by a Two-stage Microbial Reaction Using Candida parapsilosis and Gluconobacter oxydans. J Oleo Sci 2009, 58:595-600.
- [118]Abad S, Turon X: Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: Focus on polyunsaturated fatty acids. Biotechnol Adv 2012, 30:733-741.
- [119]Leoneti AB, Aragão-Leoneti V, de Oliveira SVWB: Glycerol as a by-product of biodiesel production in Brazil: Alternatives for the use of unrefined glycerol. Renewable Energy 2012, 45:138-145.
- [120]Sarma SJ, Brar SK, Sydney EB, Le Bihan Y, Buelna G, Soccol CR: Microbial hydrogen production by bioconversion of crude glycerol: A review. International Journal of Hydrogen Energy 2012, 37:6473-6490.
- [121]Astals S, Nolla-Ardèvol V, Mata-Alvarez J: Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate. Bioresour Technol 2012, 110:63-70.
- [122]Nuchdang S, Phalakornkule C: Anaerobic digestion of glycerol and co-digestion of glycerol and pig manure. J Environ Manage 2012, 101:164-172.
- [123]Jovanovic I, Jones SB, Santosa DM, Dai Z, Ramasamy K, Zhu Y: A Survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels. In PNNL-19704. Pacific Northwest National Laboratory, Richland, WA; 2010:1-48.
- [124]Nair RV, Payne MS, Trimbur DE, Valle F, Nair V, Payne S, Trimbur E: Recombinant organisms containing G3PDH and or G3P phosphatase. In Derwent Innovations Index. Du Pont De Nemours & Co E I (Dupo), Genencor Int Inc (Gemv), Genencor Int (Gemv), Du Pont De Nemours&Co E I (Dupo); Derwent Primary acession number: 1999-385384
PDF