期刊论文详细信息
Biotechnology for Biofuels
Cellulases without carbohydrate-binding modules in high consistency ethanol production process
Annukka Pakarinen1  Mai Østergaard Haven3  Demi Tristan Djajadi1  Anikó Várnai4  Terhi Puranen2  Liisa Viikari1 
[1] Department of Food and Environmental Sciences, University of Helsinki, PO 27, 00014 Helsinki, Finland
[2] Roal Oy, Tykkimäentie 15, FIN-05200 Rajamäki, Finland
[3] DONG Energy A/S, Kraftværksvej 53, 7000 Fredericia, Denmark
[4] Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432 Aas, Norway
关键词: High consistency;    Hydrolysis;    Lignocellulose;    Recyclability;    Cellobiohydrolases;    Cellulases;    CBM;    Carbohydrate-binding modules;   
Others  :  793556
DOI  :  10.1186/1754-6834-7-27
 received in 2013-11-05, accepted in 2014-02-06,  发布年份 2014
PDF
【 摘 要 】

Background

Enzymes still comprise a major part of ethanol production costs from lignocellulose raw materials. Irreversible binding of enzymes to the residual substrate prevents their reuse and no efficient methods for recycling of enzymes have so far been presented. Cellulases without a carbohydrate-binding module (CBM) have been found to act efficiently at high substrate consistencies and to remain non-bound after the hydrolysis.

Results

High hydrolysis yields could be obtained with thermostable enzymes of Thermoascus aurantiacus containing only two main cellulases: cellobiohydrolase I (CBH I), Cel7A and endoglucanase II (EG II), Cel5A. The yields were decreased by only about 10% when using these cellulases without CBM. A major part of enzymes lacking CBM was non-bound during the most active stage of hydrolysis and in spite of this, produced high sugar yields. Complementation of the two cellulases lacking CBM with CBH II (CtCel6A) improved the hydrolysis. Cellulases without CBM were more sensitive during exposure to high ethanol concentration than the enzymes containing CBM. Enzymes lacking CBM could be efficiently reused leading to a sugar yield of 90% of that with fresh enzymes. The applicability of cellulases without CBM was confirmed under industrial ethanol production conditions at high (25% dry matter (DM)) consistency.

Conclusions

The results clearly show that cellulases without CBM can be successfully used in the hydrolysis of lignocellulose at high consistency, and that this approach could provide new means for better recyclability of enzymes. This paper provides new insight into the efficient action of CBM-lacking cellulases. The relationship of binding and action of cellulases without CBM at high DM consistency should, however, be studied in more detail.

【 授权许可】

   
2014 Pakarinen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705052946578.pdf 629KB PDF download
Figure 6. 97KB Image download
Figure 5. 51KB Image download
Figure 4. 64KB Image download
Figure 3. 25KB Image download
Figure 2. 20KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Aden A, Foust T: Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 2009, 16:535-545.
  • [2]Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D: Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol. Golden, CO: National Renewable Energy Laboratory; 2011. [NREL Technical Report: NREL/TP-5100-47764]
  • [3]Zhang YHP, Himmel ME, Mielenz JR: Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 2006, 24:452-481.
  • [4]Wyman CE: What is (and is not) vital to advancing lignocellulosic ethanol. Trends Biotechnol 2007, 25(4):153-157.
  • [5]Chandel AK, Chandrasekhar G, Silva MBG, da Silva SS: The realm of cellulases in biorefinery development. Crit Rev Biotechnol 2011, 32(3):187-202.
  • [6]Lindedam J, Haven MØ, Chylenski P, Jørgensen H, Felby C: Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes. Bioresour Technol 2013, 148:180-188.
  • [7]Chundawat SPS, Beckham GT, Himmel ME, Dale BE: Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2011, 2:121-145.
  • [8]Gilkes NR, Henrissat B, Kilburn DG, Miller RC, Warren RAJ: Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 1991, 55:303-315.
  • [9]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009, 37:D233-D238.
  • [10]Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JKC, Teeri TT: Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins 1992, 14(4):475-482.
  • [11]Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: Fine-tuning polysaccharide recognition. Biochem J 2004, 382:769-781.
  • [12]van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhabhai R, Pettersson G: Limited proteolysis of the cellobioydrolase I from Trichoderma reesei. Separation of functional domains. FEBS Lett 1986, 204:223-227.
  • [13]Tomme P, van Tilbeurgh H, Pettersson G, van Damme J, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M: Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem 1988, 170:575-581.
  • [14]Ståhlberg J, Johansson G, Pettersson G: A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Nat Biotechnol 1991, 9:286-290.
  • [15]Igarashi K, Koivula A, Wada M, Kimura S, Penttilä M, Samejima M: High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 2009, 284:36186-36190.
  • [16]Jalak J, Väljamäe P: Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol Bioeng 2010, 106:871-883.
  • [17]Nakamura A, Tsukuda T, Auer S, Furuta T, Wada M, Koivula A, Igarashi K, Samejima M: The tryptophan residue at the active site tunnel entrance of Trichoderma reesei cellobiohydrolase Cel7A is important for initiation of degradation of crystalline cellulose. J Biol Chem 2013, 288(19):13503-13510.
  • [18]Várnai A, Siika-aho M, Viikari L: Carbohydrate-binding modules (CBMs) revisited: Reduced amount of water counterbalances the need for CBMs. Biotechnol Biofuels 2013, 6:30. BioMed Central Full Text
  • [19]Le Costaouëc T, Pakarinen A, Várnai A, Puranen T, Viikari L: The role of carbohydrate binding module (CBM) at high substrate consistency: comparison of Trichoderma reesei and Thermoascus aurantiacus Cel7A (CBHI) and Cel5A (EGII). Bioresour Technol 2013, 143:196-203.
  • [20]Larsen J, Haven MØ, Thirup L, Li HW, Iversen FK: The IBUS process - lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 2008, 31:765-772.
  • [21]Petersen MØ, Larsen J, Thomsen MH: Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass Bioenergy 2009, 33:834-840.
  • [22]Palonen H, Tjerneld F, Zacchi G, Tenkanen M: Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 2004, 107:65-72.
  • [23]Rahikainen JL, Moilanen U, Nurmi-Rantala S, Lappas A, Koivula A, Viikari L, Kruus K: Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases. Bioresour Technol 2013, 146:118-125.
  • [24]Voutilainen SP, Puranen T, Siika-Aho M, Lappalainen A, Alapuranen M, Kallio J, Hooman S, Viikari L, Vehmaanperä J, Koivula A: Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol Bioeng 2008, 101:515-528.
  • [25]Teugjas H, Väljamäe P: Product inhibition of cellulases studied with 14C-labeled cellulose substrates. Biotechnol Biofuels 2013, 6:104. BioMed Central Full Text
  • [26]Kristensen JB, Felby C, Jørgensen H: Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2009, 2:11. BioMed Central Full Text
  • [27]Lavenson DM, Tozzi EJ, Karuna N, Jeoh T, Powell RL, McCarthy MJ: The effect of mixing on the liquefaction and saccharification of cellulosic fibers. Bioresour Technol 2012, 111:240-247.
  • [28]Andric P, Meyer AS, Jensen PA, Dam-Johansen K: Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv 2010, 28:308-324.
  • [29]Tejirian A, Xu F: Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme Microb Technol 2011, 48:239-247.
  • [30]Haven MØ, Jørgensen H: The challenging measurement of protein in complex biomass derived samples. Appl Biochem Biotechnol 2014, 172:87-101.
  • [31]Yu AHC, Lee D, Saddler JN: Adsorption and desorption of cellulase components during the hydrolysis of a steam-exploded birch substrate. Appl Biochem Biotechnol 1995, 21:203-216.
  • [32]Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, Saddler J: Weak lignin-binding enzymes: A novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Appl Biochem Biotechnol 2005, 121:163-170.
  • [33]Kostylev M, Wilson D: Synergistic interactions in cellulose hydrolysis. Biofuels 2012, 3(1):61-70.
  • [34]Börjesson J, Engqvist M, Sipos B, Tjerneld F: Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose. Enzyme Microb Technol 2007, 41:186-195.
  • [35]Gao D, Chundawat SPS, Sethi A, Balan V, Gnanakaran S, Dale BE: Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis. Proc Natl Acad Sci U S A 2013, 110:10922-10927.
  • [36]Wu Z, Lee YY: Inhibition of the enzymatic hydrolysis of cellulose by ethanol. Biotechnol Lett 1997, 19(10):977-979.
  • [37]Cheng H, Jin S: Effect of ethanol and yeast on cellulase activity and hydrolysis of crystalline cellulose. Enzyme Microb Technol 2006, 39:1430-1432.
  • [38]Skovgaard PA, Jørgensen H: Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes. J Ind Microbiol Biotechnol 2013, 40:447-456.
  • [39]Hall M, Rubin J, Behrens SH, Bommarius AS: The cellulose-binding domain of cellobiohydrolase Cel7A from Trichoderma reesei is also a thermostabilizing domain. J Biotechnol 2011, 155:370-376.
  • [40]Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D: Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples. Golden, CO: National Renewable Energy Laboratory; 2008. [NREL Technical Report: NREL/TP-510-42623]
  • [41]van Tilbeurgh H, Loontiens FG, de Bruyne CK, Claeyssens M: Fluorogenic and chromogenic glycosides as substrates and ligands of carbohydrases. Methods Enzymol 1988, 160:45-59.
  • [42]Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C: Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 2007, 96:862-870.
  • [43]Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959, 31(3):426-428.
  • [44]Pakarinen A, Maijala P, Stoddard F, Santanen A, Kymäläinen M, Tuomainen P, Viikari L: Evaluation of annual bioenergy crops in the boreal zone for biogas and ethanol production. Biomass Bioenergy 2011, 35:3071-3078.
  • [45]Kristensen JB, Felby C, Jørgensen H: Determining yields in high solids enzymatic hydrolysis of biomass. Appl Biochem Biotechnol 2009, 156:127-132.
  • [46]Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265-275.
  • [47]Zhu Z, Sathitsuksanoh N, Zhang YHP: Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst 2009, 134(11):2267-2272.
  文献评价指标  
  下载次数:71次 浏览次数:19次