期刊论文详细信息
Sustainable Chemical Processes
Recent advances in enzyme promiscuity
Rinkoo Devi Gupta1 
[1] Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
关键词: Protein evolution;    Directed evolution;    Enzyme promiscuity;   
Others  :  1235762
DOI  :  10.1186/s40508-016-0046-9
 received in 2015-10-29, accepted in 2016-01-19,  发布年份 2016
PDF
【 摘 要 】

Enzyme promiscuity is defined as the capability of an enzyme to catalyze a reaction other than the reaction for which it has been specialized. Although, enzyme is known for its specificity, many enzymes are reported to be promiscuous in nature. However, the promiscuous function may not be relevant in physiological conditions. The reasons could be either very low level of catalytic activity or unavailability of the substrates in the cell. Hitherto, the enzyme promiscuity is of great importance because they are the starting point for the evolution of new functions in the nature. In addition, the promiscuous activities are utilized for the development of new catalytic functions by applying directed laboratory evolution and protein engineering techniques. The aim of this review is to provide recent developments on the understanding of the mechanism of catalytic promiscuity, evolvability of promiscuous functions and the applications of enzyme promiscuity in the designing of enhanced or new functional biocatalysts.

【 授权许可】

   
2016 Gupta.

【 预 览 】
附件列表
Files Size Format View
20160205011337702.pdf 1322KB PDF download
Fig.3. 40KB Image download
Fig.2. 14KB Image download
Fig.1. 20KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

【 参考文献 】
  • [1]Khersonsky O, Tawfik DS: Enzyme promiscuity: mechanistic and evolutionary perspective. Annu Rev Biochem 2010, 79:471-505.
  • [2]Copley SD: An evolutionary perspective on protein moonlighting. Biochem Soc Trans 2014, 42(6):1684-1691.
  • [3]Gupta RD, Goldsmith M, Ashani Y, Simo Y, Mullokandov G, Bar H, Ben-David M, Leader H, Margalit R, Silman I, Sussman JL, Tawfik DS: Directed evolution of hydrolases for prevention of G-type nerve agent intoxication. Nat Chem Biol 2011, 7(2):120-125.
  • [4]Jackson CJ, Foo JL, Tokuriki N, Afriat L, Carr PD, Kim HK, Schenk G, Tawfik DS, Ollis DL: Conformational sampling, catalysis, and evolution of the bacterial phosphotriesterase. Proc Natl Acad Sci USA 2009, 106(51):21631-21636.
  • [5]Bigley AN, Mabanglo MF, Harvey SP, Raushel FM: Variants of phosphotriesterase for the enhanced detoxification of the chemical warfare agent VR. Biochemistry 2015, 54(35):5502-5512.
  • [6]Nobeli I, Favia AD, Thornton JM: Protein promiscuity and its implications for biotechnology. Nat Biotechnol 2009, 27:157-167.
  • [7]Copley SD: Evolution of efficient pathways for degradation of anthropogenic chemicals. Nat Chem Biol 2009, 5(8):559-566.
  • [8]López-Iglesias M, Gotor-Fernández V: Recent advances in biocatalytic promiscuity: hydrolase-catalyzed reactions for nonconventional transformations. Chem Rec 2015, 15(4):743-759.
  • [9]Baier F, Tokuriki N: Connectivity between catalytic landscapes of the metallo-β-lactamase superfamily. J Mol Biol 2014, 426(13):2442-2456.
  • [10]Parera M, Martinez MA: Strong epistatic interactions within a single protein. Mol Biol Evol 2014, 31(6):1546-1553.
  • [11]Copley SD: An evolutionary biochemist’s perspective on promiscuity. Trends Biochem Sci 2015, 40(2):72-78.
  • [12]Atkins WM: Biological messiness vs. biological genius: mechanistic aspects and roles of protein promiscuity. J Steroid Biochem Mol Biol 2015, 151:3-11.
  • [13]Arora B, Mukherjee J, Gupta MN: Enzyme promiscuity: using the dark side of enzyme specificity in white Biotechnology. Sustainable Chemical Processes 2014, 2:25. BioMed Central Full Text
  • [14]Penning TM, Chen M, Jin Y: Promiscuity and diversity in 3-ketosteroid reductases. J Steroid Biochem Mol Biol 2015, 151:93-101.
  • [15]Miao Y, Rahimi M, Geertsema EM, Poelarends GJ: Recent developments in enzyme promiscuity for carbon-carbon bond-forming reactions. Curr Opin Chem Biol 2015, 25:115-123.
  • [16]Matange N, Podobnik M, Visweswariah SS: Metallophosphoesterases: structural fidelity with functional promiscuity. Biochem J 2015, 467(2):201-216.
  • [17]Noda-García L, Juárez-Vázquez AL, Ávila-Arcos MC, Verduzco-Castro EA, Montero-Morán G, Gaytán P, Carrillo-Tripp M, Barona-Gómez F: Insights into the evolution of enzyme substrate promiscuity after the discovery of (βα) isomerase evolutionary intermediates from a diverse metagenome. BMC Evol Biol 2015, 15:107. BioMed Central Full Text
  • [18]Huang H, Pandya C, Liu C, Al-Obaidi NF, Wang M, Zheng L, Toews Keating S, Aono M, Love JD, Evans B, Seidel RD, Hillerich BS, Garforth SJ, Almo SC, Dunaway-Mariano PS, Mariano D, Allen KN, Farelli JD: Panoramic view of a superfamily of phosphatases through substrate profiling. Proc Natl Acad Sci USA 2015, 112(16):e1974.
  • [19]Mashiyama ST, Malabanan MM, Akiva E, Bhosle R, Branch MC, Hillerich B, Jagessar K, Kim J, Patskovsky Y, Seidel RD, Stead M, Toro R, Vetting MW, Almo SC, Armstrong RN, Babbitt PC: Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere. PLoS Biol 2014, 12(4):e1001843.
  • [20]Pratap S, Katiki M, Gill P, Kumar P, Golemi-Kotra D: Active-site plasticity is essential to carbapenem hydrolysis by OXA-58 Class D β-lactamase of Acinetobacter baumannii. Antimicrob Agents Chemother 2015, 60:75-86.
  • [21]Alcolombri U, Elias M, Tawfik DS: Directed evolution of sulfotransferases and paraoxonases by ancestral libraries. J Mol Biol 2011, 411(4):837-853.
  • [22]Kraus ML, Grimm C, Seibel J: Redesign of the active site of sucrose phosphorylase by a clash induced cascade of loop shifts. Chem Bio Chem 2015.
  • [23]Afriat-Jurnou L, Jackson CJ, Tawfik DS: Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Biochemistry 2012, 51(31):6047-6055.
  • [24]Yasutake Y, Yao M, Sakai N, Kirita T, Tanaka I: Crystal structure of the Pyrococcus horikoshii isopropylmalate isomerase small subunit provides insight into the dual substrate specificity of the enzyme. J Mol Biol 2004, 344:325-333.
  • [25]Sevrioukova IF, Poulos TL: Understanding the mechanism of cytochrome P450 3A4:recent advances and remaining problems. Dalton Trans 2013, 42(9):3116-3126.
  • [26]Yao J, Guo H, Chaiprasongsuk M, Zhao N, Chen F, Yang X, Guo H: Substrate-assisted catalysis in the reaction catalyzed by salicylic acid binding protein 2 (SABP2), a potential mechanism of substrate discrimination for some promiscuous enzymes. Biochemistry 2015, 54(34):5366-5375.
  • [27]Baier F, Chen J, Solomonson M, Strynadka NC, Tokuriki N: Distinct metal isoforms underlie promiscuous activity profiles of metalloenzymes. ACS Chem Biol 2015, 10(7):1684-1693.
  • [28]Marschner A, Klein CD: Metal promiscuity and metal-dependent substrate preferences of Trypanosoma brucei methionine aminopeptidase 1. Biochimie 2015, 115:35-43.
  • [29]Pordea A: Metal-binding promiscuity in artificial metalloenzyme design. Curr Opin Chem Biol 2015, 25:124-132.
  • [30]Rivera-Perez C, Nyati P, Noriega FG: A corpora allata farnesyl diphosphate synthase in mosquitoes displaying a metal ion dependent substrate specificity. Insect Biochem Mol Biol 2015, 64:44-50.
  • [31]Kim Y, Cunningham MA, Mire J, Tesar C, Sacchettini J, Joachimiak A: NDM-1, the ultimate promiscuous enzyme: substrate recognition and catalytic mechanism. FASEB J 2013, 27(5):1917-1927.
  • [32]Tokuriki N, Tawfik DS: Protein dynamism and evolvability. Science 2009, 324:203-207.
  • [33]Kaltenbach M, Tokuriki N: Dynamics and constraints of enzyme evolution. J Exp Zool B Mol Dev Evol 2014, 322(7):468-487.
  • [34]Amitai G, Gupta RD, Tawfik DS: Laten evolutionary potentials under the neutral mutational drift of an enzyme. HFSP J 2007, 1(1):67-78.
  • [35]Gupta RD, Tawfik DS: Directed enzyme evolution via small and effective neutral drift libraries. Nat Methods 2008, 5(11):939-942.
  • [36]Miles ZD, Roberts SA, McCarty RM, Bandarian V: Biochemical and structural studies of 6-carboxy-5, 6, 7, 8-tetrahydropterin synthase reveal the molecular basis of catalytic promiscuity within the tunnel-fold superfamily. J Biol Chem 2014, 289(34):23641-23652.
  • [37]Luo XJ, Kong XD, Zhao J, Chen Q, Zhou J, Xu JH: Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp. Biotechnol Bioeng 2014, 111(10):1920-1930.
  • [38]Khanal A, Yu McLoughlin S, Kershner JP, Copley SD: Differential effects of a mutation on the normal and promiscuous activities of orthologs: implications for natural and directed evolution. Mol Biol Evol 2015, 32(1):100-108.
  • [39]de Visser JA, Krug J: Empirical fitness landscapes and the predictability of evolution. Nat Rev Genet 2014, 15(7):480-490.
  • [40]Harms MJ, Thornton JW: Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet 2013, 14(8):559-571.
  • [41]Renata H, Wang ZJ, Arnold FH: Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew Chem Int Ed Engl 2015, 54(11):3351-3367.
  • [42]Colin PY, Kintses B, Gielen F, Miton CM, Fischer G, Mohamed MF, Hyvönen M, Morgavi DP, Janssen DB, Hollfelder F: Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat Commun 2015, 6:10008.
  • [43]Meier MM, Rajendran C, Malisi C, Fox NG, Xu C, Schlee S, Barondeau DP, Höcker B, Sterner R, Raushel FM: Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template. J Am Chem Soc 2013, 135(31):11670-11677.
  • [44]Bigley AN, Xu C, Henderson TJ, Harvey SP, Raushel FM: Enzymatic neutralization of the chemical warfare agent VX: evolution of phosphotriesterase for phosphorothiolate hydrolysis. J Am Chem Soc 2013, 135(28):10426-10432.
  • [45]Naqvi T, Warden AC, French N, Sugrue E, Carr PD, Jackson CJ, Scott C: A 5000-fold increase in the specificity of a bacterial phosphotriesterase for malathion through combinatorial active site mutagenesis. PLoS One. 2014, 9(4):e94177.
  • [46]Dorr BM, Ham HO, An C, Chaikof EL, Liu DR: Reprogramming the specificity of sortase enzymes. Proc Natl Acad Sci USA 2014, 111(37):13343-13348.
  • [47]Sharma UK, Sharma N, Kumar R, Kumar R, Sinha AK: Biocatalytic promiscuity of lipase in chemoselective oxidation of aryl alcohols/acetates: a unique synergism of CAL-B and [hmim] Br for the metal-free H 2 O 2 activation. Org Lett 2009, 11(21):4846-4848.
  • [48]Bordes I, Recatalá J, Świderek K, Moliner V: Is promiscuous CALB a good scaffold for designing new epoxidases? Molecules 2015, 20(10):17789-17806.
  • [49]Leščić Ašler I, Ivić N, Kovačić F, Schell S, Knorr J, Krauss U, Wilhelm S, Kojić-Prodić B, Jaeger KE: Probing enzyme promiscuity of SGNH hydrolases. Chem Bio Chem 2010, 11(15):2158-2167.
  • [50]Li R, Perez B, Jian H, Jensen MM, Gao R, Dong M, Glasius M, Guo Z: Characterization and mechanism insight of accelerated catalytic promiscuity of Sulfolobus tokodaii (ST0779) peptidase for aldol addition reaction. Appl Microbiol Biotechnol 2015, 99:9625-9634.
  • [51]Cai Y, Bhuiya MW, Shanklin J, Liu CJ: Engineering a Monolignol 4-O-methyltransferase with High Selectivity for the Condensed Lignin Precursor Coniferyl Alchohol. J Biol Chem. 2015, 290:26715-26724.
  • [52]Koval’ T, Lipovová P, Podzimek T, Matoušek J, Dušková J, Skálová T, Stěpánková A, Hašek J, Dohnálek J: Plant multifunctional nuclease TBN1 with unexpected phospholipase activity: structural study and reaction-mechanism analysis. Acta Crystallogr D Biol Crystallogr 2013, 69(Pt 2):213-226.
  • [53]Norrgård MA, Mannervik B: Engineering GST M2-2 for high activity with indene 1,2-oxide and indication of an H-site residue sustaining catalytic promiscuity. J Mol Biol 2011, 412(1):111-120.
  文献评价指标  
  下载次数:46次 浏览次数:22次