期刊论文详细信息
BMC Bioinformatics
Automatic workflow for the classification of local DNA conformations
Daniel Svozil2  Bohdan Schneider3  Jiří Černý3  Jaromír Kukal1  Petr Čech4 
[1]Faculty of Nuclear Sciences and Physical Engineering, CTU Prague, Trojanova 13, Prague 2, 122 00, Czech republic
[2]Laboratory of Informatics and Chemistry, ICT Prague, Technická 5, Prague 6, 166 28, Czech republic
[3]Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, Prague 4, 142 00, Czech republic
[4]Department of Computing and Control Engineering, ICT Prague, Technická 5, Prague 6, 166 28, Czech republic
关键词: Cluster analysis;    Regularized regression;    k-NN;    MLP;    RBF;    Neural network;    Machine learning;    Classification;    Dinucleotide conformation;    DNA;   
Others  :  1087831
DOI  :  10.1186/1471-2105-14-205
 received in 2012-11-28, accepted in 2013-05-28,  发布年份 2013
PDF
【 摘 要 】

Background

A growing number of crystal and NMR structures reveals a considerable structural polymorphism of DNA architecture going well beyond the usual image of a double helical molecule. DNA is highly variable with dinucleotide steps exhibiting a substantial flexibility in a sequence-dependent manner. An analysis of the conformational space of the DNA backbone and the enhancement of our understanding of the conformational dependencies in DNA are therefore important for full comprehension of DNA structural polymorphism.

Results

A detailed classification of local DNA conformations based on the technique of Fourier averaging was published in our previous work. However, this procedure requires a considerable amount of manual work. To overcome this limitation we developed an automatic classification method consisting of the combination of supervised and unsupervised approaches. A proposed workflow is composed of k-NN method followed by a non-hierarchical single-pass clustering algorithm. We applied this workflow to analyze 816 X-ray and 664 NMR DNA structures released till February 2013. We identified and annotated six new conformers, and we assigned four of these conformers to two structurally important DNA families: guanine quadruplexes and Holliday (four-way) junctions. We also compared populations of the assigned conformers in the dataset of X-ray and NMR structures.

Conclusions

In the present work we developed a machine learning workflow for the automatic classification of dinucleotide conformations. Dinucleotides with unassigned conformations can be either classified into one of already known 24 classes or they can be flagged as unclassifiable. The proposed machine learning workflow permits identification of new classes among so far unclassifiable data, and we identified and annotated six new conformations in the X-ray structures released since our previous analysis. The results illustrate the utility of machine learning approaches in the classification of local DNA conformations.

【 授权许可】

   
2013 Čech et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150117050401788.pdf 1075KB PDF download
Figure 5. 31KB Image download
Figure 4. 49KB Image download
Figure 3. 133KB Image download
Figure 2. 41KB Image download
Figure 1. 33KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Watson JD, Crick FHC: Molecular structure of nucleic acids - a structure for deoxyribose nucleic acid. Nature 1953, 171(4356):737-738.
  • [2]Drew HR, Wing RM, Takano T, Broka C, Tanaka S, Itakura K, Dickerson RE: Structure of a B-DNA dodecamer: conformation and dynamics. Proc Natl Acad Sci USA 1981, 78(4):2179-2183.
  • [3]Wang AH, Fujii S, van Boom JH, Rich A: Molecular structure of the octamer d(G-G-C-C-G-G-C-C): modified A-DNA. Proc Natl Acad Sci USA 1982, 79(13):3968-3972.
  • [4]McCall M, Brown T, Kennard O: The crystal structure of d(G-G-G-G-C-C-C-C). A model for poly(dG).poly(dC). J Mol Biol 1985, 183(3):385-396.
  • [5]Wang AHJ, Quigley GJ, Kolpak FJ, Crawford JL, Vanboom JH, Vandermarel G, Rich A: Molecular-structure of a left-handed double helical DNA fragment at atomic resolution. Nature 1979, 282(5740):680-686.
  • [6]Drew HR, Dickerson RE: Structure of a B-DNA dodecamer. III. Geometry of hydration. J Mol Biol 1981, 151(3):535-556.
  • [7]Calladine CR: Mechanics of sequence-dependent stacking of bases in B-DNA. J Mol Biol 1982, 161(2):343-352.
  • [8]Jones S, van Heyningen P, Berman HM, Thornton JM: Protein-DNA interactions: a structural analysis. J Mol Biol 1999, 287(5):877-896.
  • [9]Lu XJ, Shakked Z, Olson WK: A-form conformational motifs in ligand-bound DNA structures. J Mol Biol 2000, 300(4):819-840.
  • [10]Lejeune D, Delsaux N, Charloteaux B, Thomas A, Brasseur R: Protein-nucleic acid recognition: statistical analysis of atomic interactions and influence of DNA structure. Proteins 2005, 61(2):258-271.
  • [11]Nekludova L, Pabo CO: Distinctive DNA conformation with enlarged major groove is found in Zn-finger-DNA and other protein-DNA complexes. Proc Natl Acad Sci USA 1994, 91(15):6948-6952.
  • [12]Olson WK, Gorin AA, Lu XJ, Hock LM, Zhurkin VB: DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc Natl Acad Sci USA 1998, 95(19):11163-11168.
  • [13]Tolstorukov MY, Jernigan RL, Zhurkin VB: Protein-DNA hydrophobic recognition in the minor groove is facilitated by sugar switching. J Mol Biol 2004, 337(1):65-76.
  • [14]Murphy FV, Churchill ME: Nonsequence-specific DNA recognition: a structural perspective. Structure 2000, 8(4):R83-R89.
  • [15]Shakked Z, Guzikevich-Guerstein G, Frolow F, Rabinovich D, Joachimiak A, Sigler PB: Determinants of repressor/operator recognition from the structure of the trp operator binding site. Nature 1994, 368(6470):469-473.
  • [16]Kim Y, Geiger JH, Hahn S, Sigler PB: Crystal structure of a yeast TBP/TATA-box complex. Nature 1993, 365(6446):512-520.
  • [17]Guzikevich-Guerstein G, Shakked Z: A novel form of the DNA double helix imposed on the TATA-box by the TATA-binding protein. Nat Struct Biol 1996, 3(1):32-37.
  • [18]Lebrun A, Shakked Z, Lavery R: Local DNA stretching mimics the distortion caused by the TATA box-binding protein. Proc Natl Acad Sci USA 1997, 94(7):2993-2998.
  • [19]Ding J, Das K, Hsiou Y, Sarafianos SG, Clark AD Jr, Jacobo-Molina A, Tantillo C, Hughes SH, Arnold E: Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. J Mol Biol 1998, 284(4):1095-1111.
  • [20]Pelletier H, Sawaya MR, Kumar A, Wilson SH, Kraut J: Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science 1994, 264(5167):1891-1903.
  • [21]Eom SH, Wang J, Steitz TA: Structure of Taq polymerase with DNA at the polymerase active site. Nature 1996, 382(6588):278-281.
  • [22]Kiefer JR, Mao C, Braman JC, Beese LS: Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 1998, 391(6664):304-307.
  • [23]Doublie S, Tabor S, Long AM, Richardson CC, Ellenberger T: Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature 1998, 391(6664):251-258.
  • [24]Pavletich NP, Pabo CO: Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 1993, 261(5129):1701-1707.
  • [25]Robinson H, Gao YG, McCrary BS, Edmondson SP, Shriver JW, Wang AH: The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature 1998, 392(6672):202-205.
  • [26]Winkler FK, Banner DW, Oefner C, Tsernoglou D, Brown RS, Heathman SP, Bryan RK, Martin PD, Petratos K, Wilson KS: The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J 1993, 12(5):1781-1795.
  • [27]Horton NC, Perona JJ: Recognition of flanking DNA sequences by EcoRV endonuclease involves alternative patterns of water-mediated contacts. J Biol Chem 1998, 273(34):21721-21729.
  • [28]Kostrewa D, Winkler FK: Mg2+ binding to the active site of EcoRV endonuclease: a crystallographic study of complexes with substrate and product DNA at 2 A resolution. Biochemistry-Us 1995, 34(2):683-696.
  • [29]Travers AA: Reading the minor groove. Nat Struct Biol 1995, 2(8):615-618.
  • [30]Choo Y, Klug A: Physical basis of a protein-DNA recognition code. Curr Opin Struct Biol 1997, 7(1):117-125.
  • [31]Elrod-Erickson M, Benson TE, Pabo CO: High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc finger-DNA recognition. Structure 1998, 6(4):451-464.
  • [32]Svozil D, Kalina J, Omelka M, Schneider B: DNA conformations and their sequence preferences. Nucleic Acids Res 2008, 36(11):3690-3706.
  • [33]Moravek Z, Neidle S, Schneider B: Protein and drug interactions in the minor groove of DNA. Nucleic Acids Res 2002, 30(5):1182-1191.
  • [34]Oguey C, Foloppe N, Hartmann B: Understanding the sequence-dependence of DNA groove dimensions: implications for DNA interactions. PLoS One 2010, 5(12):e15931.
  • [35]Orbons LP, van der Marel GA, van Boom JH, Altona C: Hairpin and duplex formation of the DNA octamer d(m5C-G-m5C-G-T-G-m5C-G) in solution. An NMR study. Nucleic Acids Res 1986, 14(10):4187-4196.
  • [36]Jain A, Wang G, Vasquez KM: DNA triple helices: biological consequences and therapeutic potential. Biochimie 2008, 90(8):1117-1130.
  • [37]Stuhmeier F, Welch JB, Murchie AI, Lilley DM, Clegg RM: Global structure of three-way DNA junctions with and without additional unpaired bases: a fluorescence resonance energy transfer analysis. Biochemistry-Us 1997, 36(44):13530-13538.
  • [38]Hays FA, Watson J, Ho PS: Caution! DNA crossing: crystal structures of Holliday junctions. J Biol Chem 2003, 278(50):49663-49666.
  • [39]Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S: Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 2006, 34(19):5402-5415.
  • [40]Rippe K, Jovin TM: Parallel-stranded duplex DNA. Methods Enzymol 1992, 211:199-220.
  • [41]Bhattacharyya D, Bansal M: Local variability and base sequence effects in DNA crystal structures. J Biomol Struct Dyn 1990, 8(3):539-572.
  • [42]Gorin AA, Zhurkin VB, Olson WK: B-DNA twisting correlates with base-pair morphology. J Mol Biol 1995, 247(1):34-48.
  • [43]Hunter CA, Lu XJ: DNA base-stacking interactions: a comparison of theoretical calculations with oligonucleotide X-ray crystal structures. J Mol Biol 1997, 265(5):603-619.
  • [44]Strahs D, Schlick T: A-Tract bending: insights into experimental structures by computational models. J Mol Biol 2000, 301(3):643-663.
  • [45]Tolstorukov MY, Colasanti AV, McCandlish DM, Olson WK, Zhurkin VB: A novel roll-and-slide mechanism of DNA folding in chromatin: implications for nucleosome positioning. J Mol Biol 2007, 371(3):725-738.
  • [46]Battistini F, Hunter CA, Gardiner EJ, Packer MJ: Structural mechanics of DNA wrapping in the nucleosome. J Mol Biol 2010, 396(2):264-279.
  • [47]Olson WK, Bansal M, Burley SK, Dickerson RE, Gerstein M, Harvey SC, Heinemann U, Lu XJ, Neidle S, Shakked Z, et al.: A standard reference frame for the description of nucleic acid base-pair geometry. J Mol Biol 2001, 313(1):229-237.
  • [48]Arnott S, Selsing E: Structures for the polynucleotide complexes poly(dA) with poly (dT) and poly(dT) with poly(dA) with poly (dT). J Mol Biol 1974, 88(2):509-521.
  • [49]Vlieghe D, Van Meervelt L, Dautant A, Gallois B, Precigoux G, Kennard O: Parallel and antiparallel (G.GC)2 triple helix fragments in a crystal structure. Science 1996, 273(5282):1702-1705.
  • [50]Rhee S, Han Z, Liu K, Miles HT, Davies DR: Structure of a triple helical DNA with a triplex-duplex junction. Biochemistry-Us 1999, 38(51):16810-16815.
  • [51]Neidle S, Balasubramanian S: Quadruplex Nucleic Acids. Cambridge: RSC Publishing; 2006.
  • [52]von Kitzing E, Lilley DM, Diekmann S: The stereochemistry of a four-way DNA junction: a theoretical study. Nucleic Acids Res 1990, 18(9):2671-2683.
  • [53]Lilley DM: Structures of helical junctions in nucleic acids. Q Rev Biophys 2000, 33(2):109-159.
  • [54]Reshetnikov RV, Kopylov AM, Golovin AV: Classification of g-quadruplex DNA on the basis of the quadruplex twist angle and planarity of g-quartets. Acta Naturae 2010, 2(4):72-81.
  • [55]Watson J, Hays FA, Ho PS: Definitions and analysis of DNA Holliday junction geometry. Nucleic Acids Res 2004, 32(10):3017-3027.
  • [56]Neidle S: Principles of Nucleic Acid Structure. Oxford: Academic; 2007.
  • [57]Dickerson RE: Base sequence and helix structure variation in B and A DNA. J Mol Biol 1983, 166(3):419-441.
  • [58]Yanagi K, Prive GG, Dickerson RE: Analysis of local helix geometry in three B-DNA decamers and eight dodecamers. J Mol Biol 1991, 217(1):201-214.
  • [59]Suzuki M, Amano N, Kakinuma J, Tateno M: Use of a 3D structure data base for understanding sequence-dependent conformational aspects of DNA. J Mol Biol 1997, 274(3):421-435.
  • [60]ElHassan MA, Calladine CR: Conformational characteristics of DNA: Empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps. Philos T Roy Soc A 1997, 355(1722):43-100.
  • [61]Packer MJ, Hunter CA: Sequence-dependent DNA structure: the role of the sugar-phosphate backbone. J Mol Biol 1998, 280(3):407-420.
  • [62]Schuerman GS, Van Meervelt L: Conformational flexibility of the DNA backbone. J Am Chem Soc 2000, 122(2):232-240.
  • [63]Varnai P, Djuranovic D, Lavery R, Hartmann B: Alpha/gamma transitions in the B-DNA backbone. Nucleic Acids Res 2002, 30(24):5398-5406.
  • [64]Djuranovic D, Hartmann B: Conformational characteristics and correlations in crystal structures of nucleic acid oligonucleotides: evidence for sub-states. J Biomol Struct Dyn 2003, 20(6):771-788.
  • [65]Djuranovic D, Hartmann B: DNA fine structure and dynamics in crystals and in solution: the impact of BI/BII backbone conformations. Biopolymers 2004, 73(3):356-368.
  • [66]Djuranovic D, Oguey C, Hartmann B: The role of DNA structure and dynamics in the recognition of bovine papillomavirus E2 protein target sequences. J Mol Biol 2004, 339(4):785-796.
  • [67]Madhumalar A, Bansal M: Sequence preference for BI/BII conformations in DNA: MD and crystal structure data analysis. J Biomol Struct Dyn 2005, 23(1):13-27.
  • [68]Heddi B, Foloppe N, Bouchemal N, Hantz E, Hartmann B: Quantification of DNA BI/BII backbone states in solution. Implications for DNA overall structure and recognition. J Am Chem Soc 2006, 128(28):9170-9177.
  • [69]Marathe A, Karandur D, Bansal M: Small local variations in B-form DNA lead to a large variety of global geometries which can accommodate most DNA-binding protein motifs. BMC Struct Biol 2009, 9:24. BioMed Central Full Text
  • [70]Schneider B, Neidle S, Berman HM: Conformations of the sugar-phosphate backbone in helical DNA crystal structures. Biopolymers 1997, 42(1):113-124.
  • [71]Sims GE, Kim SH: Global mapping of nucleic acid conformational space: dinucleoside monophosphate conformations and transition pathways among conformational classes. Nucleic Acids Res 2003, 31(19):5607-5616.
  • [72]Elsawy KM, Hodgson MK, Caves LS: The physical determinants of the DNA conformational landscape: an analysis of the potential energy surface of single-strand dinucleotides in the conformational space of duplex DNA. Nucleic Acids Res 2005, 33(18):5749-5762.
  • [73]Sargsyan K, Wright J, Lim C: GeoPCA: a new tool for multivariate analysis of dihedral angles based on principal component geodesics. Nucleic Acids Res 2012, 40(3):e25.
  • [74]Wijmenga SS, van Buuren BNM: The use of NMR methods for conformational studies of nucleic acids. Prog Nucl Magn Reson Spectrosc 1998, 32(4):287-387.
  • [75]Furtig B, Richter C, Wohnert J, Schwalbe H: NMR spectroscopy of RNA. Chembiochem Eur J Chem Biol 2003, 4(10):936-962.
  • [76]Zidek L, Stefl R, Sklenar V: NMR methodology for the study of nucleic acids. Curr Opin Struct Biol 2001, 11(3):275-281.
  • [77]Gorenstein DG, Schroeder SA, Fu JM, Metz JT, Roongta V, Jones CR: Assignments of 31P NMR resonances in oligodeoxyribonucleotides: origin of sequence-specific variations in the deoxyribose phosphate backbone conformation and the 31P chemical shifts of double-helical nucleic acids. Biochemistry-Us 1988, 27(19):7223-7237.
  • [78]Schroeder SA, Roongta V, Fu JM, Jones CR, Gorenstein DG: Sequence-dependent variations in the 31P NMR spectra and backbone torsional angles of wild-type and mutant Lac operator fragments. Biochemistry-Us 1989, 28(21):8292-8303.
  • [79]el antri S, Bittoun P, Mauffret O, Monnot M, Convert O, Lescot E, Fermandjian S: Effect of distortions in the phosphate backbone conformation of six related octanucleotide duplexes on CD and 31P NMR spectra. Biochemistry-Us 1993, 32(28):7079-7088.
  • [80]Heddi B, Foloppe N, Oguey C, Hartmann B: Importance of accurate DNA structures in solution: the Jun-Fos model. J Mol Biol 2008, 382(4):956-970.
  • [81]Abi-Ghanem J, Heddi B, Foloppe N, Hartmann B: DNA structures from phosphate chemical shifts. Nucleic Acids Res 2010, 38(3):e18.
  • [82]Nikolova EN, Bascom GD, Andricioaei I, Al-Hashimi HM: Probing sequence-specific DNA flexibility in a-tracts and pyrimidine-purine steps by nuclear magnetic resonance (13)C relaxation and molecular dynamics simulations. Biochemistry-Us 2012, 51(43):8654-8664.
  • [83]Chou SH, Cheng JW, Reid BR: Solution structure of [d(ATGAGCGAATA)]2. Adjacent G:A mismatches stabilized by cross-strand base-stacking and BII phosphate groups. J Mol Biol 1992, 228(1):138-155.
  • [84]Lefebvre A, Mauffret O, Lescot E, Hartmann B, Fermandjian S: Solution structure of the CpG containing d(CTTCGAAG)2 oligonucleotide: NMR data and energy calculations are compatible with a BI/BII equilibrium at CpG. Biochemistry-Us 1996, 35(38):12560-12569.
  • [85]Tisne C, Hantz E, Hartmann B, Delepierre M: Solution structure of a non-palindromic 16 base-pair DNA related to the HIV-1 kappa B site: evidence for BI-BII equilibrium inducing a global dynamic curvature of the duplex. J Mol Biol 1998, 279(1):127-142.
  • [86]Wecker K, Bonnet MC, Meurs EF, Delepierre M: The role of the phosphorus BI-BII transition in protein-DNA recognition: the NF-kappaB complex. Nucleic Acids Res 2002, 30(20):4452-4459.
  • [87]Heddi B, Oguey C, Lavelle C, Foloppe N, Hartmann B: Intrinsic flexibility of B-DNA: the experimental TRX scale. Nucleic Acids Res 2010, 38(3):1034-1047.
  • [88]Schneider B, Moravek Z, Berman HM: RNA conformational classes. Nucleic Acids Res 2004, 32(5):1666-1677.
  • [89]Hartigan JA: Clustering Algorithms. : John Wiley & Sons Inc; 1975.
  • [90]Berman HM, Olson WK, Beveridge DL, Westbrook J, Gelbin A, Demeny T, Hsieh SH, Srinivasan AR, Schneider B: The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J 1992, 63(3):751-759.
  • [91]Murray LJ, Arendall WB 3rd, Richardson DC, Richardson JS: RNA backbone is rotameric. Proc Natl Acad Sci USA 2003, 100(24):13904-13909.
  • [92]Mu Y, Nguyen PH, Stock G: Energy landscape of a small peptide revealed by dihedral angle principal component analysis. Proteins 2005, 58(1):45-52.
  • [93]Altis A, Nguyen PH, Hegger R, Stock G: Dihedral angle principal component analysis of molecular dynamics simulations. J Chem Phys 2007, 126(24):244111.
  • [94]Jammalamadaka SR, Sengupta A: Topics in Circular Statistics. Singapore: World Scientific Pub Co Inc; 2001.
  • [95]Hoerl AE WKR: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970, 42(1):7.
  • [96]Bishop CA: Pattern Recognition and Machine Learning. 2nd edition. New York: Springer; 2006.
  • [97]Cohen J: A coefficient of agreement for nominal scales. Educ Psychol Meas 1960, 20(1):10.
  • [98]MacCuish DJ, MacCuish EN: Clustering in Bioinformatics and Drug Discovery. 3rd edition. Boca Raton: CRC Press; 2010.
  • [99]Neidle S: The structures of quadruplex nucleic acids and their drug complexes. Curr Opin Struct Biol 2009, 19(3):239-250.
  • [100]Williamson JR: G-quartet structures in telomeric DNA. Annu Rev Biophys Biomol Struct 1994, 23:703-730.
  • [101]Sen D, Gilbert W: Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 1988, 334(6180):364-366.
  • [102]Huppert JL, Balasubramanian S: G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 2007, 35(2):406-413.
  • [103]Horvath MP, Schultz SC: DNA G-quartets in a 1.86 A resolution structure of an Oxytricha nova telomeric protein-DNA complex. J Mol Biol 2001, 310(2):367-377.
  • [104]Haider S, Parkinson GN, Neidle S: Crystal structure of the potassium form of an Oxytricha nova G-quadruplex. J Mol Biol 2002, 320(2):189-200.
  • [105]Smith FW, Feigon J: Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. Nature 1992, 356(6365):164-168.
  • [106]Campbell NH, Patel M, Tofa AB, Ghosh R, Parkinson GN, Neidle S: Selectivity in ligand recognition of G-quadruplex loops. Biochemistry-Us 2009, 48(8):1675-1680.
  • [107]Haider SM, Parkinson GN, Neidle S: Structure of a G-quadruplex-ligand complex. J Mol Biol 2003, 326(1):117-125.
  • [108]Theobald DL, Schultz SC: Nucleotide shuffling and ssDNA recognition in Oxytricha nova telomere end-binding protein complexes. EMBO J 2003, 22(16):4314-4324.
  • [109]Gill ML, Strobel SA, Loria JP: Crystallization and characterization of the thallium form of the Oxytricha nova G-quadruplex. Nucleic Acids Res 2006, 34(16):4506-4514.
  • [110]Campbell NH, Smith DL, Reszka AP, Neidle S, O'Hagan D: Fluorine in medicinal chemistry: beta-fluorination of peripheral pyrrolidines attached to acridine ligands affects their interactions with G-quadruplex DNA. Org Biomol Chem 2011, 9(5):1328-1331.
  • [111]Schultze P, Smith FW, Feigon J: Refined solution structure of the dimeric quadruplex formed from the Oxytricha telomeric oligonucleotide d(GGGGTTTTGGGG). Structure 1994, 2(3):221-233.
  • [112]Smith FW, Schultze P, Feigon J: Solution structures of unimolecular quadruplexes formed by oligonucleotides containing Oxytricha telomere repeats. Structure 1995, 3(10):997-1008.
  • [113]Schultze P, Hud NV, Smith FW, Feigon J: The effect of sodium, potassium and ammonium ions on the conformation of the dimeric quadruplex formed by the Oxytricha nova telomere repeat oligonucleotide d(G(4)T(4)G(4)). Nucleic Acids Res 1999, 27(15):3018-3028.
  • [114]Gill ML, Strobel SA, Loria JP: 205Tl NMR methods for the characterization of monovalent cation binding to nucleic acids. J Am Chem Soc 2005, 127(47):16723-16732.
  • [115]Eichman BF, Vargason JM, Mooers BH, Ho PS: The Holliday junction in an inverted repeat DNA sequence: sequence effects on the structure of four-way junctions. Proc Natl Acad Sci USA 2000, 97(8):3971-3976.
  • [116]Sychrovsky V, Vokacova Z, Sponer J, Spackova N, Schneider B: Calculation of structural behavior of indirect NMR spin-spin couplings in the backbone of nucleic acids. J Phys Chem B 2006, 110(45):22894-22902.
  文献评价指标  
  下载次数:25次 浏览次数:21次