| Chemistry Central Journal | |
| Structure-based drug design studies of UDP-N-acetylglucosamine pyrophosphosrylase, a key enzyme for the control of witches’ broom disease | |
| Manoelito C Santos Junior5  Sandra Aparecida de Assis5  Aristóteles Góes-Neto1  Ângelo Amâncio Duarte2  Ricardo José Alves3  Moacyr Comar Junior4  Alex Gutterres Taranto4  | |
| [1] Ciências Biológicas, Feira de Santana, Feira de Santana-BA 44031-460, Brazil | |
| [2] Tecnologia, Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana-BA 44031-460, Brazil | |
| [3] Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Produtos Farmacêuticos, Av. Antônio Carlos, 6627, Pampulha 31270-901, Belo Horizonte, MG, Brazil | |
| [4] Laboratório de Modelagem Molecular, Programas de Pós-Graduação em Biotecnologia e Ciências Farmacêuticas, Campus Centro Oeste (CCO), Universidade Federal de São João Del-Rei, Divinópolis-MG 35501-296, Brazil | |
| [5] Departamentos de Saúde, Feira de Santana, Feira de Santana-BA 44031-460, Brazil | |
| 关键词: Moniliophthora perniciosa; Pyrophosphorylase; Molecular dynamics; Docking; | |
| Others : 787944 DOI : 10.1186/1752-153X-7-48 |
|
| received in 2012-12-06, accepted in 2013-02-15, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
The witches’ broom disease is a plague caused by Moniliophthora perniciosa in the Theobroma cacao, which has been reducing the cocoa production since 1989. This issue motivated a genome project that has showing several new molecular targets, which can be developed inhibitors in order to control the plague. Among the molecular targets obtained, the UDP-N-acetylglucosamine pyrophosphorylase (UNAcP) is a key enzyme to construct the fungal cell wall. The inhibition of this enzyme results in the fungal cell death.
Results
The results show that the molecular recognition of the enzyme with the substrates occurs mainly by hydrogen bonds between ligands and Arg116, Arg383, Gly381, and Lys408 amino acids; and few hydrophobic interactions with Tyr382 and Lys123 residues.
Conclusions
Among the compounds analyzed, the NAG5 showed the best binding energy (−95.2 kcal/mol). The next steps for the control of witches’ broom plague involve the synthesis and biological evaluation of these compounds, which are in progress.
【 授权许可】
2013 Junior et al.; licensee Chemistry Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140702222220384.pdf | 1216KB | ||
| Figure 4. | 85KB | Image | |
| Figure 3. | 140KB | Image | |
| 20150131073049155.pdf | 1547KB | ||
| Figure 1. | 86KB | Image |
【 图 表 】
Figure 1.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Pereira JL: First occurence of witches’broom disease in the principal cocoa-growins region of brazil. Trop Agric 1990, 67:188-189.
- [2]Muse RB, Collin HA, Isaac S, Hardwick K: Effects of the fungus Crinipellis perniciosa, causal agent of witche’s broom disease, on cell and tissue cultures of cacao (Theobroma cacao L.). Plant Pathol 1996, 45:145-154.
- [3]CEPLAC: Panorama da economia mundial de cacau. http://www.ceplac.gov.br/Sinopse_Cacau/Panorama/producao-mundial.htm webcite
- [4]Medeiros FHV: A novel integrated method for management of witches’broom diseace in Cacao in Bahia. Brazil. Crop. Protection 2010, 29:704-711.
- [5]Costa JCB: Controle biológico da vassoura-de-bruxa do cacaueiro da Bahia, Brasil. In Biocontrole de doenças de plantas: uso e perspectivas. Edited by Bettiol W. Jaguariúna: Embrapa meio ambiente; 2009:245-266.
- [6]Oliveira ML, Luz EDMN: Vassoura-de-bruxa. In Identificação e manejo das principais doenças do cacaueiro no Brasil. Edited by Oliveira ML, Luz EDMN. Ilhéus: CEPLAC/CEPEC/SEFIT; 2005:15-33.
- [7]de Andrade DVG, Góes-Neto A, Comar Junior M, Taranto AG: Comparative modeling and QM/MM studies of cysteine protease mutant of Theobroma cacao. Int. J. Quantum Chem. 2012, 112:3164-3168.
- [8]Pinheiro AAF, Taranto AG, Duarte AA, Góes-Neto A, da Hora Júnior BT, Pereira GAG, dos Santos Júnior MC, de Assis SA: Homology modeling studies of beta(1,3)-D-glucan synthase of Moniliophthora perniciosa. Int. J. Quantum Chem. 2012, 112:3356-3363.
- [9]Andrade BS, Taranto AG, Góes-Neto A, Duarte AA: Comparative modeling of DNA and RNA polymerases from moniliophthora perniciosa mitochondrial plasmid. Theor Biol Med Model 2009, 6:22-22. BioMed Central Full Text
- [10]Dos Santos Junior MC, Taranto AG, Assis AS, Góes-Neto A: Homology modeling of pyrophosphorylase, enzyme involved in chitin pathway of moniliophthora perniciosa. International Journal of Bioinformatics Research and Applications (IJBRA) 2009, 5:133-153.
- [11]Macedo VUM, Dos Santos Júnior Manoelito C, Souza CS, Galante RS, Andrade BS, Assis SA, Góes-Neto A, Taranto AG: Aspectos gerais do moniliophthora perniciosa (STAHEL) AIME & PHILLIPS-MORA, O agente etiológico da vassoura-de-bruxa. Sitientibus. Série Ciências Biológicas 2009, 9:57-65.
- [12]Souza CS, Costa GGL, Uetanabaro APT, Pirovani CP, Pereira GAG, Cascardo JC De M, Taranto AG, Góes-Neto A: Identification and characterization of a class III chitin synthase gene of Monilliophthora perniciosa, the fungus that causes wtiches’ broom disease of cacao. J Microbiol 2009, 47:431-440.
- [13]Herscovics A, Orlean P: Glycoprotein biosynthesis in yeast. FASEB J 1993, 7:540-550.
- [14]Santos Junior MC, Gonçalves PA, Taranto AG, Koblitz MGB, Góes-Neto A, Pirovani CP, Cascardo JCM, Cruz SH, Zingali RB, Pereira GAG, Dias CV, Assis AS: Purification, characterization and structural dertermination of UDP-N-Acetylglucosamine pyrophosphorylase produced by Moniliophthora perniciosa. J Braz Chem Soc 2011, 22:1015-1023.
- [15]Strominger JL, Smith MS: Uridine diphosphoacetylglucosamine pyrophosphorylase. J Biol Chem 1959, 234:1822-1827.
- [16]Peneff C, Ferrari P, Charrier V, Taburet Y, Monnier C, Zamboni V, Winter J, Harnois M, Fassy F, Bourne Y: Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc: role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture. EMBO J 2001, 20:6191-6202.
- [17]Yamamoto K: Inhibition of UDP-N-acetylglicosamine pyrophosphorylase by uridine. BBA 1980, 614:367-372.
- [18]Smith GS, Sternberg MJE: Prediction of protein–protein interactions by docking methods. Curr. Opin. Struc. Bio. 2002, 12:28-35.
- [19]Wong CF: Flexible ligand-flexible protein docking in protein kinases systems. BBA. 2008, 1784:244-251.
- [20]Ewing TJA: DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Compu-Aided Mol. Des 2001, 15:411-428.
- [21]Vieth M: Assessing search strategies for flexible docking. J. Compt. Chem. 1998, 19:1623-1631.
- [22]Rino JP, Studart N: Um potencial de interação para o estudo de materiais e simulações por dinâmica molecular. Quim. Nova 2001, 24:838-845.
- [23]Maruyama D, Nishitani Y, Yuichi N, Tsuyoshi K, Akiko F, Takaaki M, Toshiyuki YO, Hisafumi YO, Toshiko MK: Crystal structure of uridine-diphospho-N-acetylglucosamine pyphosphosrylase from Candida albicans and catalytic reaction mechanism. J Biol Chem 2007, 282:17221-17230.
- [24]Trott O, Olson AJ: AutoDock Vina: improvising the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comp. Chem. 2010, 31:455-461.
- [25]Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossvai I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA: AMBER 10. San Francisco: University of California; 2008.
- [26]Krumrine J: Principles and methods of docking and ligand design. In Strucutural Bioinformatics. Edited by Bourne PE, Helge W. New Jersey: Wiley; 2003:443-476.
PDF