期刊论文详细信息
Chemistry Central Journal
Diagnostic techniques in deflagration and detonation studies
William G. Proud2  David M. Williamson1  John E. Field1  Stephen M. Walley1 
[1] Surface Microstructure and Fracture Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, Uinted Kingdom
[2] Institute of Shock Physics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, United Kingdom
关键词: Characterisation;    Diagnostic;    Experimental;    Quantitative;    High-speed;   
Others  :  1229430
DOI  :  10.1186/s13065-015-0128-x
 received in 2014-09-11, accepted in 2015-09-09,  发布年份 2015
PDF
【 摘 要 】

Advances in experimental, high-speed techniques can be used to explore the processes occurring withinenergetic materials. This review describes techniques used to study a wide range of processes: hot-spot formation, ignition thresholds, deflagration, sensitivity and finally the detonation process. As this is a wide field the focus will be on small-scale experiments and quantitative studies. It is important that such studies are linked to predictive models, which inform the experimental design process. The stimuli range includes, thermal ignition, drop-weight, Hopkinson Bar and Plate Impact studies. Studies made with inert simulants are also included as these are important in differentiating between reactive response and purely mechanical behaviour.

【 授权许可】

   
2015 Proud et al.

【 预 览 】
附件列表
Files Size Format View
20151030012113558.pdf 2631KB PDF download
Fig.25. 24KB Image download
Fig.24. 14KB Image download
Fig.23. 34KB Image download
Fig.22. 19KB Image download
Fig.21. 29KB Image download
Fig.20. 17KB Image download
Fig.19. 20KB Image download
Fig.18. 15KB Image download
Fig.17. 31KB Image download
Fig.16. 39KB Image download
Fig.15. 35KB Image download
Fig.14. 16KB Image download
Fig.13. 19KB Image download
Fig.12. 22KB Image download
Fig.11. 26KB Image download
Fig.10. 23KB Image download
Fig.9. 39KB Image download
Fig.8. 22KB Image download
Fig.7. 23KB Image download
Fig.6. 35KB Image download
Fig.5. 31KB Image download
Fig.4. 16KB Image download
Fig.3. 15KB Image download
Fig.2. 47KB Image download
Fig.1. 38KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.9.

Fig.10.

Fig.11.

Fig.12.

Fig.13.

Fig.14.

Fig.15.

Fig.16.

Fig.17.

Fig.18.

Fig.19.

Fig.20.

Fig.21.

Fig.22.

Fig.23.

Fig.24.

Fig.25.

【 参考文献 】
  • [1]Santis LD (2000) A summary of transportation incidents and accidents involving Class 1 materials from 1993 to 1998 in the United States. In: Proceedings of the Annual Conference on Explosives and Blasting Technique. Vol. 1 Cleveland, International Society of Explosives Engineers: 123–132
  • [2]Deschambault EJ (2006) Relationships between UN transportation tests and NATO SsD 1.2.3 and IM tests. In: Proceedings of the 37th International Annual Conference of Institut für Chemische Technologie. Karlsruhe, Germany: paper 68
  • [3]Smith GW, Riches MJ et al.. Ultra: a new approach to ultrahigh-speed framing cameras. Proc SPIE. 2001; 4183:105-118.
  • [4]Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR. Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng. 2004; 30:725-775.
  • [5]Meyers MA. Dynamic behavior of materials. Wiley Interscience, New York; 1994.
  • [6]Greenaway MW, Laity PR, et al. (2006) X-ray microtomography of sugar and HMX granular beds undergoing compaction. Shock compression of condensed matter-2005. In: Furnish MD, Elert M, Russell TP, White CT (eds) American Institute of Physics, Melville, pp 1279–1282
  • [7]Proud WG, Palmer SJP, Field JE, Kennedy G, Lewis A. AFM studies of PBX systems. Thermochim Acta. 2002; 384:245-251.
  • [8]Collins AL, Cole JM, et al. (2009) A parametric study into the thermal properties of copper(II) styphnate tetrahydrate using single-crystal X-ray diffraction. In: Proceedings 40th International Annual Conference of the Institut für Chemische Technologie. Karlsruhe, Germany, Institut für Chemische Technologie: paper 63
  • [9]Lewis AL, Goldrein HT. Strain measurement techniques in explosives. Strain. 2004; 40:33-37.
  • [10]Williamson DM, Palmer, SJP, et al. (2006) Fracture studies of PBX simulant materials. Shock compression of condensed matter-2005. In: Furnish MD, Elert M, Russell TP, White CT (eds) American Institute of Physics, Melville, pp 829–832
  • [11]Williamson DM, Palmer SJP, et al. (2009) Thermodynamic work of adhesion between HMX and a UK PBX system. Shock compression of condensed matter-2009. In: Elert ML, Buttler WT, Furnish MD, Anderson WW, Proud WG (eds) American Institute of Physics, Melville, pp 478–481
  • [12]Williamson DM, Siviour CR et al.. Temperature-time response of a polymer bonded explosive in compression (EDC37). J Phys D Appl Phys. 2008; 41:085404.
  • [13]Bowden FP, Yoffe AD (1952) Initiation and growth of explosion in liquids and solids. Cambridge University Press, Cambridge (republ. 1985)
  • [14]Field JE, Swallowe GM, Heavens SN. Ignition mechanisms of explosives during mechanical deformation. Proc R Soc Lond A. 1982; 382:231-244.
  • [15]Luebcke PE (1995) The deflagration-to-detonation transition in granular secondary explosives, PhD Thesis, Cambridge
  • [16]Luebcke PE, Dickson PM et al.. An experimental study of the deflagration to detonation transition in granular secondary explosives. Proc R Soc Lond A. 1995; 448:439-448.
  • [17]Korotkov AI, Sulimov AA et al.. Transition from combustion to detonation in porous explosives. Combust Explos Shock Waves. 1969; 5:216-222.
  • [18]Griffiths N, Groocock JM. The burning to detonation of solid explosives. J Chem Soc. 1960; 11:4154-4162.
  • [19]Dickson PM, Field JE. Initiation and propagation in primary explosives. Proc R Soc Lond A. 1993; 441:359-375.
  • [20]Gifford MJ, Proud WG, Field JE. Development of a method for quantification of hot-spots. Thermochim Acta. 2002; 384:285-290.
  • [21]Gifford MJ, Proud WG and Field JE (2002) Observations on type II deflagration-to-detonation transitions. Shock Compression of Condensed Matter-2001. In: Furnish MD, Thadhani NN, Horie Y (eds) American Institute of Physics, Melville, pp 878–881
  • [22]Gifford MJ, Luebcke PE et al.. A new mechanism for deflagration-to-detonation in porous granular explosives. J Appl Phys. 1999; 86:1749-1753.
  • [23]Pope PH (1985) Dynamic compression of metals and explosives. PhD thesis, University of Cambridge
  • [24]Follansbee PS, Regazzoni G, Kocks UF. The transition to drag controlled deformation in copper at high strain rates. Inst Phys Conf Ser. 1984; 70:71-80.
  • [25]Swallowe GM, Lee SF. A study of the mechanical properties of PMMA and PS at strain rates of 10 4 –10 3  s −1 over the temperature range 293–363 K. J Phys IV France. 2003; 110:33-38.
  • [26]Radford DD, Walley SM, Church P, Field JE. Dynamic upsetting and failure of metal cylinders: experiments and analysis. J Phys IV France. 2003; 110:263-268.
  • [27]Meyer LW, Herzigb N, Halleb T, Hahnb F, Kruegerc L, Staudhammer KP (2007) J Mat Processing Tech, Vol. 182, pp 319–326, ISSN 1–3
  • [28]Heavens SN, Field JE. The ignition of a thin layer of explosive by impact. Proc R Soc Lond A. 1974; 338:77-93.
  • [29]Field JE, Bourne NK, Palmer SJP, Walley SM. Hot-spot ignition mechanisms for explosives and propellants. Philos Trans R Soc Lond A. 1992; 339:269-283.
  • [30]Walley SM, Field JE, Palmer SJP. Impact sensitivity of propellants. Proc R Soc Lond A. 1992; 438:571-583.
  • [31]Walley SM, Balzer JE, Proud WG, Field JE. Response of thermites to dynamic high pressure and shear. Proc R Soc Lond A. 2000; 456:1483-1503.
  • [32]Czerski H, Greenaway MW, Proud WG, Field JE. β-δ phase transition during drop weight impact on HMX. J Appl Phys. 2004; 96:4131-4134.
  • [33]Henson BF, Asay BW et al.. Dynamic measurement of the HMX β-δ phase transition by second harmonic generation. Phys Rev Lett. 1999; 82:1213-1216.
  • [34]Saw CK (2002) Kinetics of HMX and phase transitions: Effects of particle size at elevated temperature. In: Proceedings Twelfth International Detonation Symposium. Office of Naval Research, Arlington, pp 70–76
  • [35]Smilowitz L, Henson BF, Asay BW, Dickson PM (2002) Kinetics of the β-δ phase transition in PBX 9501. Shock compression of condensed matter-2001. In: Furnish MD, Thadhani NN, Horie Y (eds) American Institute of Physics, Melville, pp 1077–1080
  • [36]Smilowitz L, Henson BF et al.. The β-δ phase transition in the energetic nitramine ocathydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: kinetics. J Chem Phys. 2002; 117:3789-3798.
  • [37]Field JE, Bourne NK, Palmer SJP, Walley SM (unpublished)
  • [38]Sjödahl M. Electronic speckle photography: increased accuracy by non-integral pixel shifting. Appl Opt. 1994; 33:6667-6673.
  • [39]Sjödahl M, Benckert LR (1993) Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy. Appl Opt, pp 2278–2284
  • [40]Siviour CR (2004) Grantham SG, Williamson DM, Proud, WG, Walley SM, Field JE, High resolution optical analysis of dynamic experiments on PBXs. In: Proceedings of 7th Seminar on New Trends in Research of Energetic Materials. J. Vágenknecht. Pardubice, Czech Republic, University of Pardubice: 277–284
  • [41]Williamson D, Private Communication
  • [42]Sjödahl M (1995) Electronic speckle photography applied to in-plane deformation and strain field measurements. PhD thesis, Luleå University of Technology, Luleå, Sweden
  • [43]Grantham SG, Goldrein HT, Proud WG, Field JE. Digital speckle radiography—a new ballistic measurment technique. Imaging Sci J. 2003; 51:175-186.
  • [44]Church P, Townsley R, Bezance T, Proud B, Grantham S, Bourne N, Millet J. Simulation of precise setforward and setback experiments. Int J Imapact Eng. 2005; 32:80-91.
  • [45]Bourne NK, Rosenberg Z, Johnson DJ, Field JE, Timbs AE, Flaxman RP. Design and construction of the UK plate impact facility. Meas Sci Technol. 1995; 6:1462-1470.
  • [46]Gustavsen RL, Sheffield SA, Alcon RR, Winter RE, Taylor P, Salisbury DA (2002) Double shock initiation of the HMX based explosive EDC-37. In: Proceedings of the 12th APS Topical Meeting on Shock Compression of Condensed Matter 2001 (Edited by Furnish/Thadhani/Horie), The American Institute of Physics, New York, pp 999–1002
  • [47]Chakravarty A, Gifford MJ, Greenaway MW, Proud WG, Field JE (2002) Factors affecting shock sensitivity of energetic materials. 12th APS Topical Meeting on Shock Compression of Condensed Matter 2001. In: Furnish MD, Thadhani NN, Horie Y (eds) American Institute of Physics, Melville, pp 1007–1010
  • [48]Bauer F (1999) Advances in piezoelectric PVDF shock compression sensors: applications to HE studies. In: Proceedings of 25th International Pyrotechnics Seminar, Association Française de Pyrotechnie, Saint Aubin, pp 28–37
  • [49]Barker LM, Hollenbach RE. Laser interferometer for measuring high velocities of any reflecting surface. J Appl Phys. 1972; 43:4669-4675.
  • [50]Proud, WG, Field, JE, Milne A, Longbottom AW, Haskins PJ, Briggs RI, Cook MD (2003) The detonation of NM/Al mixtures. In: Proceedings of Fifth International Symposium on High Dynamic Pressures, Vol 1. Commissariat à l’Energie Atomique, Paris, pp 135–141
  文献评价指标  
  下载次数:326次 浏览次数:42次