期刊论文详细信息
Annals of Occupational and Environmental Medicine
Insights into biodiversity sampling strategies for freshwater microinvertebrate faunas through bioblitz campaigns and DNA barcoding
Brandon J Laforest2  Amanda K Winegardner3  Omar A Zaheer1  Nicholas W Jeffery1  Elizabeth E Boyle1  Sarah J Adamowicz1 
[1] Biodiversity Institute of Ontario, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
[2] Faculty of Environmental Studies, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
[3] Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, QC, H2X 2K6, Canada
关键词: Subarctic;    Accumulation curves;    Zooplankton;    Species richness;    Citizen science;    Bioblitz;    Sampling strategy;    Barcoding biotas;    Crustacea;    Ostracoda;   
Others  :  1085451
DOI  :  10.1186/1472-6785-13-13
 received in 2012-12-13, accepted in 2013-03-14,  发布年份 2013
PDF
【 摘 要 】

Background

Biodiversity surveys have long depended on traditional methods of taxonomy to inform sampling protocols and to determine when a representative sample of a given species pool of interest has been obtained. Questions remain as to how to design appropriate sampling efforts to accurately estimate total biodiversity. Here we consider the biodiversity of freshwater ostracods (crustacean class Ostracoda) from the region of Churchill, Manitoba, Canada. Through an analysis of observed species richness and complementarity, accumulation curves, and richness estimators, we conduct an a posteriori analysis of five bioblitz-style collection strategies that differed in terms of total duration, number of sites, protocol flexibility to heterogeneous habitats, sorting of specimens for analysis, and primary purpose of collection. We used DNA barcoding to group specimens into molecular operational taxonomic units for comparison.

Results

Forty-eight provisional species were identified through genetic divergences, up from the 30 species previously known and documented in literature from the Churchill region. We found differential sampling efficiency among the five strategies, with liberal sorting of specimens for molecular analysis, protocol flexibility (and particularly a focus on covering diverse microhabitats), and a taxon-specific focus to collection having strong influences on garnering more accurate species richness estimates.

Conclusions

Our findings have implications for the successful design of future biodiversity surveys and citizen-science collection projects, which are becoming increasingly popular and have been shown to produce reliable results for a variety of taxa despite relying on largely untrained collectors. We propose that efficiency of biodiversity surveys can be increased by non-experts deliberately selecting diverse microhabitats; by conducting two rounds of molecular analysis, with the numbers of samples processed during round two informed by the singleton prevalence during round one; and by having sub-teams (even if all non-experts) focus on select taxa. Our study also provides new insights into subarctic diversity of freshwater Ostracoda and contributes to the broader “Barcoding Biotas” campaign at Churchill. Finally, we comment on the associated implications and future research directions for community ecology analyses and biodiversity surveys through DNA barcoding, which we show here to be an efficient technique enabling rapid biodiversity quantification in understudied taxa.

【 授权许可】

   
2013 Laforest et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113173520487.pdf 904KB PDF download
Figure 3. 84KB Image download
Figure 2. 17KB Image download
Figure 1. 214KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Havel JE, Hebert PDN, Delorme LD: Genotypic diversity of asexual Ostracoda from a low arctic site. J Evol Biol 1990, 3:391-410.
  • [2]Little TJ, Hebert PDN: Clonal diversity in high arctic ostracodes. J Evol Biol 1997, 10:233-252.
  • [3]Schön I, Martens K, Van Doninck K, Butlin RK: Evolution in the slow lane: molecular rates of evolution in sexual and asexual ostracods (Crustacea: Ostracoda). Boil J Linn Soc 2003, 79:93-100.
  • [4]Tinn O, Oakley TH: Erratic rates of molecular evolution and incongruence of fossil and molecular divergence time estimates in Ostracoda (Crustacea). Mol Phylogenet Evol 2008, 48:157-167.
  • [5]Wetterich S, Schirrmeister L, Meyer H, Viehberg FA, Mackensen A: Arctic freshwater ostracods from modern periglacial environments in the Lena River Delta (Siberian Arctic, Russia): geochemical applications for palaeoenvironmental reconstructions. J Paleolimnol 2008, 39:427-449.
  • [6]Bode SNS, Adolfsson S, Lamatsch DK, Martins MJF, Schmit O: Exceptional cryptic diversity and multiple origins of parthenogenesis in a freshwater ostracod. Mol Phylogenet Evol 2010, 54:542-552.
  • [7]Bellavere C, Benassi G, Calzolari M, Meisch C, Mckenzie KG: Heterocypris (Crustacea, Ostracoda) from the Isole Pelagie (Sicily, Italy): the coexistence of different morphotypes. Ital J Zool 2002, 69:53-57.
  • [8]Martens K, Schön I, Meish C, Horne DJ: Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 2008, 595:185-193.
  • [9]Brusca RC, Brusca GJ: Invertebrates. 2nd edition. Sunderland: Sinauer Associates; 2003.
  • [10]Thorp JH, Covich AP: Ecology and classification of North American freshwater invertebrates (3rd ed.). San Diego, California, USA: Academic Press (Elsevier); 2002.
  • [11]Athersuch J, Horne DJ, Whittaker JE: Marine and brackish water ostracods. Bath, England, UK: Bath Press; 1989.
  • [12]Meisch C: Freshwater Ostracoda of Western and Central Europe. Heidelberg, Germany: Specktrum Akademischer Verlag; 2000.
  • [13]Frenzel P, Keyser D, Viehberg FA: An illustrated key and (palaeo)ecological primer for postglacial to recent Ostracoda (Crustacea) of the Baltic Sea. Boreas 2010, 39:567-575.
  • [14]Baltanás A, García-Avilés J: New records of freshwater Ostracoda (Crustacea) from the Canary Islands. Bull Soc Nat luxemb 1993, 94:219-232.
  • [15]Külköylüoğlu O: Ecology and phenology of freshwater ostracods in Lake Gölköy (Bolu, Turkey). Aquat Ecol 2005, 39:295-304.
  • [16]Meisch C, Malmqvist B, Nilsson AN: Freshwater Ostracoda (Crustacea) collected in Tenerife, Canary Islands. Mitt hamb zool Mus Inst 1995, 92:281-293.
  • [17]Meisch C, Mary-Sasal N, Colin J-P, Wouters K: Freshwater Ostracoda (Crustacea) collected from the islands of Futuna and Wallis, Pacific Ocean, with a checklist of the non-marine Ostracoda of the Pacific Islands. Bull Soc Nat luxemb 2007, 108:89-103.
  • [18]Rossetti G, Martens K, Meisch C, Tavernelli S, Pieri V: Small is beautiful: diversity of freshwater ostracods (Crustacea, Ostracoda) in marginal habitats of the province of Parma (Northern Italy). J Limnol 2006, 65:121-131.
  • [19]Victor R: The taxonomy and distribution of freshwater Ostracods (Crustacea – Ostracoda) of Malaysia, Indonesia and the Philippines. PhD thesis. University of Waterloo; 1979.
  • [20]Victor R, Fernando CH: Distribution of freshwater Ostracoda (Crustacea) in Southeast Asia. J Biogeogr 1982, 9:281-288.
  • [21]Viehberg FA: A new and simple method for qualitative sampling of meiobenthos-communities. Limnologica 2002, 32:350-351.
  • [22]Brinkman MA, Duffy WG: Evaluation of four wetland aquatic invertebrate samplers and four sample sorting methods. J Freshwater Ecol 1996, 11:193-200.
  • [23]Cao Y, Hawkins CP, Vinson MR: Measuring and controlling data quality in biological assemblage surveys with special reference to stream benthic macroinvertebrates. Freshwater Biol 2003, 48:1898-1911.
  • [24]Cao Y, Hawkins CP, Storey AW: A method for measuring the comparability of difference sampling methods used in biological surveys: implications for data integration and synthesis. Freshwater Biol 2005, 50:1105-1115.
  • [25]Cheal F, Davis JA, Growns JE, Bradley JS, Whittles FH: The influence of sampling method on the classification of wetland macroinvertebrate communities. Hydrobiologia 1993, 257:47-56.
  • [26]Florencio M, Díaz-Paniagua C, Gomez-Mestre I, Serrano L: Sampling macroinvertebrates in a temporary pond: comparing the suitability of two techniques to detect richness, spatial segregation and diel activity. Hydrobiologia 2011.
  • [27]Gunzburger M: Evaluation of seven aquatic sampling methods for amphibians and other aquatic fauna. Appl Herpotol 2007, 4:47-63.
  • [28]Jurado GB, Masterson M, Harrington R, Kelly-Quinn M: Evaluation of sampling methods for macroinvertebrate biodiversity estimation in heavily vegetated ponds. Hydrobiologia 2008, 597:97-107.
  • [29]Meyer CK, Peterson SD, Whiles MR: Quantitative assessment of yield, precision, and cost-effectiveness of three wetland invertebrate sampling techniques. Wetlands 2011, 31:101-112.
  • [30]Degerlund M, Huseby S, Zingone A, Sarno D, Landfald B: Functional diversity in cryptic species of Chaetoceros socialis Lauder (Bacillariophyceae). J Plankton Res 2012.
  • [31]Jeffery NW, Elías-Gutiérrez M, Adamowicz SJ: Species diversity and phylogeographical affinities of the Branchiopoda (Crustacea) of Churchill, Manitoba, Canada. PLoS ONE 2011, 6:e18364.
  • [32]Kucera M, Darling KF: Cryptic species of planktonic foraminifera: their effect on palaeoceanographic reconstructions. Phil Trans R Soc Lond A 2002, 360:695-718.
  • [33]Lim GS, Blake M, Meier R: Determining species boundaries in a world full of rarity: singletons, species delimitation methods. Syst Biol 2012, 61:165-169.
  • [34]Cohn JP: Citizen science: can volunteers do real research? Bioscience 2008, 38:192-197.
  • [35]Dickinson JL, Zuckerberg B, Bonter DN: Citizen science as an ecological research tool: Challenges and benefits. Annu Rev Ecol Evol S 2010, 41:149-172.
  • [36]Lepczyk CA, Boyle OD, Vargo TL, Gould P, Jordan R, Liebenberg L, Masi S, Mueller WP, Prysby MD, Vaughan H: Symposium 18: Citizen science in ecology: the intersection of research and education. Bulletin of the Ecological Society of America 2009, 90:308-317.
  • [37]Miller-Rushing A, Primack R, Bonney R: The history of public participation in ecological research. Front Ecol Environ 2012, 10:285-290.
  • [38]Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W: Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. P Natl Acad Sci USA 2004, 101:14812-14817.
  • [39]Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN: DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). P Natl Acad Sci USA 2006, 103:3657-3662.
  • [40]Witt JDS, Threloff DL, Hebert PDN: DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol Ecol 2006, 15:3073-3082.
  • [41]Kerr KCR, Stoeckle MY, Dove DJ, Weigt LA, Francis CM: Comprehensive DNA barcode coverage of North American birds. Mol Ecol Notes 2007, 7:535-543.
  • [42]Smith MA, Fernandez-Triana J, Roughly R, Hebert PDN: DNA barcode accumulation curves for understudied taxa and areas. Mol Ecol Resour 2009, 9:208-216.
  • [43]Ratnasingham S, Hebert PDN: BOLD: the barcode of life data system. Mol Ecol Notes 2007, 7:355-364. (http://www.barcodinglife.org webcite)
  • [44]Elías-Guttiérez M, Jerónimo FM, Ivanova NV, Valdez-Moreno M, Hebert PDN: DNA barcodes for Cladocera and Copepoda from Mexico and Guatemala, highlights and new discoveries. Zootaxa 1839, 2008:1-42.
  • [45]Bucklin A, Ortman BD, Jennings RM, Nigro LM, Sweetman CJ: A “Rosetta Stone” for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean). Deep-Sea Res II 2010, 57:2234-2247.
  • [46]Zhou X, Adamowicz SJ, Jacobus LM, DeWalt RE, Hebert PDN: Towards a comprehensive barcode library for arctic life – Ephemeroptera, Plecoptera, and Trichoptera of Churchill, Manitoba, Canada. Front Zool 2009., 6 BioMed Central Full Text
  • [47]Ivanova NV, DeWaard JR, Hebert PDN: An inexpensive, automation friendly protocol for recovering high-quality DNA. Mol Ecol Notes 2006, 6:998-1002.
  • [48]Meusnier I, Singer GAC, Landry JF, Hickey DA, Hebert PDN, Hajibabaei M: A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 2008, 9:214.
  • [49]Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980, 16:111-120.
  • [50]Collins RA, Boykin LM, Cruickshank RH, Armstrong KF: Barcoding’s next top model: an evaluation of nucleotide substitution models for specimen identification. MEE 2012, 3:457-465.
  • [51]Srivathsan A, Meier R: On the inappropriate use of the Kimura-2-parameter (K2P) divergences in the barcoding literature. Cladistics 2012, 28:190-194.
  • [52]R Core Development Team: The R Project for Statistical Computing. 2009. Available online: http://www.r-project.org/ webcite
  • [53]Oksanen J: Multivariate Analysis of Ecological Communities in R: vegan tutorial. Comprehensive R Archive Network. 2007. Available online: http://cran.r-project.org/ webcite
  • [54]Colwell RK: EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.2. User’s Guide and application published at: http://purl.oclc.org/estimates webcite. (Accessed October, 2012)
  • [55]Gotelli NJ, Colwell RK: Estimating species richness. In Biological Diversity: Frontiers in Measurement and Assessment. Edited by Magurran AE, McGill BJ. Oxford, England, UK: Oxford University Press; 2011:39-54.
  • [56]Hebert PDN, Cywinska A, Ball SL, de Waard JR: Biological identifications through DNA barcodes. P Roy Soc B-Biol Sci 2003, 270:313-321.
  • [57]Park DS, Foottit R, Maw E, Hebert PDN: Barcoding bugs: DNA-based identification of the true bugs (Insecta: Hemiptera: Heteroptera). PLoS One 2011, 6:e18749.
  • [58]Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN: DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). PNAS 2006, 103:3657-3662.
  • [59]Smith MA, Wood DM, Janzen DH, Hallwachs W, Hebert PDN: DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. PNAS 2007, 104:4967-4972.
  • [60]Smith MA, Rodriguez JJ, Whitfield JB, Deans AR, Janzen DH, Hallwachs W, Hebert PDN: Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. PNAS 2008, 105:12359-12364.
  • [61]Shokralla S, Spall JL, Gibson JF, Hajibabaei M: Next-generation sequencing technologies for environmental DNA research. Mol Ecol 2012, 21:1794-1805.
  • [62]Hajibabaei M, Shokralla S, Zhou X, Singer GAC, Baird DJ: Environmental barcoding: A next-generation sequencing approach for biomonitoring applications using river benthos. PLoS One 2011, 6:e17497.
  • [63]Storey AW, Edward DHD, Gazey P: Suber and kick sampling: a comparison for the assessment of macroinvertebrate community structure in streams of south-western Australia. Hydrobiologia 1991, 211:111-121.
  文献评价指标  
  下载次数:41次 浏览次数:9次