期刊论文详细信息
Biology Direct
Transcription factor binding sites are highly enriched within microRNA precursor sequences
Jittima Piriyapongsa2  I King Jordan3  Andrew B Conley3  Tom Ronan4  Neil R Smalheiser1 
[1] Department of Psychiatry, University of Illinois at Chicago, UIC Psychiatric Institute MC912, 1601 W. Taylor Street, Chicago, IL 60612 USA
[2] Genome Institute, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Klong1, Klong Luang, Pathumthani 12120, Thailand
[3] School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332 USA
[4] Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
关键词: drosha;    microRNA biogenesis;    Transcription factors;   
Others  :  797049
DOI  :  10.1186/1745-6150-6-61
 received in 2011-08-04, accepted in 2011-12-02,  发布年份 2011
PDF
【 摘 要 】

Background

Transcription factors are thought to regulate the transcription of microRNA genes in a manner similar to that of protein-coding genes; that is, by binding to conventional transcription factor binding site DNA sequences located in or near promoter regions that lie upstream of the microRNA genes. However, in the course of analyzing the genomics of human microRNA genes, we noticed that annotated transcription factor binding sites commonly lie within 70- to 110-nt long microRNA small hairpin precursor sequences.

Results

We report that about 45% of all human small hairpin microRNA (pre-miR) sequences contain at least one predicted transcription factor binding site motif that is conserved across human, mouse and rat, and this rises to over 75% if one excludes primate-specific pre-miRs. The association is robust and has extremely strong statistical significance; it affects both intergenic and intronic pre-miRs and both isolated and clustered microRNA genes. We also confirmed and extended this finding using a separate analysis that examined all human pre-miR sequences regardless of conservation across species.

Conclusions

The transcription factor binding sites localized within small hairpin microRNA precursor sequences may possibly regulate their transcription. Transcription factors may also possibly bind directly to nascent primary microRNA gene transcripts or small hairpin microRNA precursors and regulate their processing.

Reviewers

This article was reviewed by Guillaume Bourque (nominated by Jerzy Jurka), Dmitri Pervouchine (nominated by Mikhail Gelfand), and Yuriy Gusev.

【 授权许可】

   
2011 Piriyapongsa et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706030629182.pdf 404KB PDF download
Figure 6. 72KB Image download
Figure 5. 72KB Image download
Figure 4. 33KB Image download
Figure 3. 40KB Image download
Figure 2. 28KB Image download
Figure 1. 19KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
  • [2]Martinez NJ, Walhout AJ: The interplay between transcription factors and microRNAs in genome-scale regulatory networks. Bioessays 2009, 31:435-445.
  • [3]Turner MJ, Slack FJ: Transcriptional control of microRNA expression in C. elegans: promoting better understanding. RNA Biol 2009, 6:49-53.
  • [4]Xu H, He JH, Xiao ZD, Zhang QQ, Chen YQ, Zhou H, Qu LH: Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development. Hepatology 2010, 52:1431-1442.
  • [5]UCSC Genome Browser [http://genome.ucsc.edu/] webcite
  • [6]Lin S, Cheung WK, Chen S, Lu G, Wang Z, Xie D, Li K, Lin MC, Kung HF: Computational identification and characterization of primate-specific microRNAs in human genome. Comput Biol Chem 2010, 34:232-241.
  • [7]Liang Y, Ridzon D, Wong L, Chen C: Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007, 8:166. BioMed Central Full Text
  • [8]Garzon R, Marcucci G, Croce CM: Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010, 9:775-789.
  • [9]Saba R, Schratt GM: MicroRNAs in neuronal development, function and dysfunction. Brain Res 2010, 1338:3-13.
  • [10]Qiu C, Wang J, Yao P, Wang E, Cui Q: microRNA evolution in a human transcription factor and microRNA regulatory network. BMC Syst Biol 2010, 4:90. BioMed Central Full Text
  • [11]Saini HK, Griffiths-Jones S, Enright AJ: Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA 2007, 104:17719-17724.
  • [12]Llave C, Xie Z, Kasschau KD, Carrington JC: Cleavage of Scarecrow-like mRNA targets directed by a class ofArabidopsis miRNA. Science 2002, 297:2053-2056.
  • [13]Song Gao J, Zhang Y, Li M, Tucker LD, Machan JT, Quesenberry P, Rigoutsos I, Ramratnam B: Atypical transcription of microRNA gene fragments. Nucleic Acids Res 2010, 38:2775-2787.
  • [14]Zhu S, Jiang Q, Wang G, Liu B, Teng M, Wang Y: Chromatin structure characteristics of pre-miRNA genomic sequences. BMC Genomics 2011, 12:329. BioMed Central Full Text
  • [15]Tata PR, Tata NR, Kühl M, Sirbu IO: Identification of a novel epigenetic regulatory region within the pluripotency associated microRNA cluster, EEmiRC. Nucleic Acids Res 2011, 39:3574-3581.
  • [16]Sakamoto S, Aoki K, Higuchi T, Todaka H, Morisawa K, Tamaki N, Hatano E, Fukushima A, Taniguchi T, Agata Y: The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol 2009, 29:3754-3769.
  • [17]Cassiday LA, Maher LJ: Having it both ways: transcription factors that bind DNA and RNA. Nucleic Acids Res 2002, 30:4118-4126.
  • [18]Parrott AM, Tsai M, Batchu P, Ryan K, Ozer HL, Tian B, Mathews MB: The evolution and expression of the snaR family of small non-coding RNAs. Nucleic Acids Res 2011, 39:1485-1500.
  • [19]Shiohama A, Sasaki T, Noda S, Minoshima S, Shimizu N: Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins. Exp Cell Res 2007, 313:4196-4207.
  • [20]Nicol SM, Fuller-Pace FV: Analysis of the RNA helicase p68 (Ddx5) as a transcriptional regulator. Methods Mol Biol 2010, 587:265-279.
  • [21]Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R: The Microprocessor complex mediates the genesis of microRNAs. Nature 2004, 432:235-240.
  • [22]Michlewski G, Guil S, Semple CA, Cáceres JF: Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell 2008, 32:383-393.
  • [23]Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Filipowicz W, Ramos A, Gherzi R, Rosenfeld MG: The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 2009, 459:1010-1014.
  • [24]Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A: Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 2010, 39:373-384.
  • [25]Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34:D140-D144.
  • [26]Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ: The UCSC Table Browser data retrieval tool. Nucleic Acids Res 2004, 32:D493-D496.
  • [27]GOStat [http://gostat.wehi.edu.au/] webcite
  • [28]DAVID [http://david.abcc.ncifcrf.gov/] webcite
  • [29]Fatigo [http://www.babelomics.org] webcite
  • [30]Liang H, Li WH: Lowly expressed human microRNA genes evolve rapidly. Molec Biol Evol 2009, 26:1195-1198.
  • [31]Wingender E, Dietze P, Karas H, Knüppel R: TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 1996, 24:238-241.
  • [32]Vlieghe D, Sandelin A, De Bleser PJ, Vleminckx K, Wasserman WW, van Roy F, Lenhard B: A new generation of JASPAR, the open-access repository for transcription factor binding site profiles. Nucleic Acids Res 2006, 34:D95-D97.
  • [33]Korhonen J, Martinmäki P, Pizzi C, Rastas P, Ukkonen E: MOODS: fast search for position weight matrix matches in DNA sequences. Bioinformatics 2009, 25:3181-3182.
  文献评价指标  
  下载次数:57次 浏览次数:0次