期刊论文详细信息
Biotechnology for Biofuels
Model-driven intracellular redox status modulation for increasing isobutanol production in Escherichia coli
Jiao Liu1  Haishan Qi1  Cheng Wang1  Jianping Wen1 
[1] SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
关键词: Glyceraldehyde-3-phosphate dehydrogenase;    Synthetic promoters;    Genome-scale metabolic model;    Redox balance;    Isobutanol;   
Others  :  1225779
DOI  :  10.1186/s13068-015-0291-2
 received in 2015-03-06, accepted in 2015-07-22,  发布年份 2015
PDF
【 摘 要 】

Background

Few strains have been found to produce isobutanol naturally. For building a high performance isobutanol-producing strain, rebalancing redox status of the cell was very crucial through systematic investigation of redox cofactors metabolism. Then, the metabolic model provided a powerful tool for the rational modulation of the redox status.

Results

Firstly, a starting isobutanol-producing E. coli strain LA02 was engineered with only 2.7 g/L isobutanol produced. Then, the genome-scale metabolic modeling was specially carried out for the redox cofactor metabolism of the strain LA02 by combining flux balance analysis and minimization of metabolic adjustment, and the GAPD reaction catalyzed by the glyceraldehyde-3-phosphate dehydrogenase was predicted as the key target for redox status improvement. Under guidance of the metabolic model prediction, a gapN-encoding NADP +dependent glyceraldehyde-3-phosphate dehydrogenase pathway was constructed and then fine-tuned using five constitutive promoters. The best strain LA09 was obtained with the strongest promoter BBa_J23100. The NADPH/NADP + ratios of strain LA09 reached 0.67 at exponential phase and 0.64 at stationary phase. The redox modulations resulted in the decrease production of ethanol and lactate by 17.5 and 51.7% to 1.32 and 6.08 g/L, respectively. Therefore, the isobutanol titer was increased by 221% to 8.68 g/L.

Conclusions

This research has achieved rational redox status improvement of isobutanol-producing strain under guidance of the prediction and modeling of the genome-scale metabolic model of isobutanol-producing E. coli strain with the aid of synthetic promoters. Therefore, the production of isobutanol was dramatically increased by 2.21-fold from 2.7 to 8.68 g/L. Moreover, the developed model-driven method special for redox cofactor metabolism was of very helpful to the redox status modulation of other bio-products.

【 授权许可】

   
2015 Liu et al.

【 预 览 】
附件列表
Files Size Format View
20150922002459839.pdf 3233KB PDF download
Fig.4. 72KB Image download
Fig.3. 81KB Image download
Fig.2. 67KB Image download
Fig.1. 154KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

【 参考文献 】
  • [1]Karabektas M, Hosoz M: Performance and emission characteristics of a diesel engine using isobutanol-diesel fuel blends. Renew Energy 2009, 34:1554-1559.
  • [2]Atsumi S, Hanai T, Liao JC: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451(3):86-90.
  • [3]Li S, Huang D, Li Y, Wen J, Jia X: Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis. Microb Cell Fact 2012, 11:101. BioMed Central Full Text
  • [4]Smith KM, Cho KM, Liao JC: Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 2010, 87(3):1045-1055.
  • [5]Ghosh A, Zhao H, Price ND: Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae. PLoS ONE 2011, 6(11):e27316.
  • [6]Trinh CT, Li J, Blanch HW, Clark DS: Redesigning Escherichia coli metabolism for anaerobic production of isobutanol. Appl Environ Microbiol 2011, 77(14):4894-4904.
  • [7]Trinh CT: Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production. Appl Microbiol Biotechnol 2012, 95(4):1083-1094.
  • [8]Qi H, Li S, Zhao S, Huang D, Xia M, Wen J: Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis. PLoS One 2014, 9(4):e93815.
  • [9]Foster JW, Moat AG: Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiol Rev 1980, 44(1):83-105.
  • [10]Lee WH, Kim JW, Park EH, Han NS, Kim MD, Seo JH: Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli. Appl Microbiol Biotechnol 2013, 97(4):1561-1569.
  • [11]King ZA, Feist AM: Optimal cofactor swapping can increase the theoretical yield for chemical production in Escherichia coli and Saccharomyces cerevisiae. Metab Eng 2014, 24:117-128.
  • [12]Huang D, Li S, Xia M, Wen J, Jia X: Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement. Microb Cell Fact 2013, 12:52. BioMed Central Full Text
  • [13]Shi A, Zhu X, Lu J, Zhang X, Ma Y: Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng 2013, 16:1-10.
  • [14]Bro C, Regenberg B, Förster J, Nielsen J: In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 2006, 8(2):102-111.
  • [15]Singh A, Cher Soh K, Hatzimanikatis V, Gill RT: Manipulating redox and ATP balancing for improved production of succinate in Escherichia coli. Metab Eng. 2011, 13(1):76-81.
  • [16]Nocon J, Steiger MG, Pfeffer M, Sohn SB, Kim TY, Maurer M, et al.: Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production. Metab Eng 2014, 24:129-138.
  • [17]Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MM, Arnold FH: Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 2011, 13(3):345-352.
  • [18]Bommareddy RR, Chen Z, Rappert S, Zeng AP: A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng 2014, 25:30-37.
  • [19]Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M: Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl Environ Microbiol 2010, 76(21):7154-7160.
  • [20]Alper H, Fischer C, Nevoigt E, Stephanopoulos G: Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA 2005, 102(36):12678-12683.
  • [21]Meynial-Salles I, Cervin MA, Soucaille P: New tool for metabolic pathway engineering in Escherichia coli: one-step method to modulate expression of chromosomal genes. Appl Environ Microbiol 2005, 71(4):2140-2144.
  • [22]Ji XJ, Xia ZF, Fu NH, Nie ZK, Shen MQ, Tian QQ, et al.: Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae. Biotechnol Biofuels 2013, 6(1):7. BioMed Central Full Text
  • [23]Boghigian BA, Lee K, Pfeifer BA: Computational analysis of phenotypic space in heterologous polyketide biosynthesis—applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae. J Theor Biol 2010, 262(2):197-207.
  • [24]Meng H, Lu Z, Wang Y, Wang X, Zhang S: In silico improvement of heterologous biosynthesis of erythromycin precursor 6-deoxyerythronolide B in Escherichia coli. Biotechnol Bioprocess Eng 2011, 16(3):445-456.
  • [25]Csonka LN, Fraenkel DG: Pathways of NADPH formation in Escherichia coli. J Biol Chem 1977, 252(10):3382-3391.
  • [26]Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E: The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 2004, 279(8):6613-6619.
  • [27]Fuhrer T, Sauer U: Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J Bacteriol 2009, 191(7):2112-2121.
  • [28]Centeno-Leija S, Utrilla J, Flores N, Rodriguez A, Gosset G, Martinez A: Metabolic and transcriptional response of Escherichia coli with a NADP(+)-dependent glyceraldehyde 3-phosphate dehydrogenase from Streptococcus mutans. Antonie Van Leeuwenhoek 2013, 104(6):913-924.
  • [29]Zhu J, Shimizu K: The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli. Appl Microbiol Biotechnol 2004, 64(3):367-375.
  • [30]Singh A, Lynch MD, Gill RT: Genes restoring redox balance in fermentation-deficient E. coli NZN111. Metab Eng 2009, 11:347-354.
  • [31]Zhou L, Zuo ZR, Chen XZ, Niu DD, Tian KM, Prior BA, et al.: Evaluation of genetic manipulation strategies on D-lactate production by Escherichia coli. Curr Microbiol 2011, 62(3):981-989.
  • [32]Canonaco F, Hess TA, Heri S, Wang T, Szyperski T, Sauer U: Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 2001, 204(2):247-252.
  • [33]Martínez I, Zhu J, Lin H, Bennett GN, San KY: Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng 2008, 10(6):352-359.
  • [34]Iddar A, Valverde F, Serrano A, Soukri A: Expression, purification, and characterization of recombinant nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Clostridium acetobutylicum. Protein Expr Purif 2002, 25(3):519-526.
  • [35]Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC: Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 2010, 85(3):651-657.
  • [36]Zhou YJ, Yang W, Wang L, Zhu Z, Zhang S, Zhao ZK: Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production. Microb Cell Fact 2013, 12:103. BioMed Central Full Text
  • [37]Wimpenny JW, Firth A: Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. J Bacteriol 1972, 111(1):24-32.
  • [38]Jensen PR, Michelsen O: Carbon and energy metabolism of atp mutants of Escherichia coli. J Bacteriol 1992, 174:7635-7641.
  • [39]Naseem R, Wann KT, Holland IB, Campbell AK: ATP regulates calcium efflux and growth in E. coli. J Mol Biol 2009, 391:42-56.
  • [40]Ying W: NAD + /NADH and NADP + /NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 2008, 10(2):179-206.
  • [41]Brynildsen MP, Liao JC: An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol Syst Biol 2009, 5:277.
  • [42]Kim I, Yun H, Jin I: Comparative proteomic analyses of the yeast Saccharomyces cerevisiae KNU5377 strain against menadione-induced oxidative stress. J Microbiol Biotechnol 2007, 17(2):207-217.
  • [43]Schreiber W, Dürre P: The glyceraldehyde-3-phosphate dehydrogenase of Clostridium acetobutylicum: isolation and purification of the enzyme, and sequencing and localization of the gap gene within a cluster of other glycolytic genes. Microbiology 1999, 145(Pt 8):1839-1847.
  • [44]Lim JH, Seo SW, Kim SY, Jung GY: Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metab Eng 2013, 20:56-62.
  • [45]Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008, 3(6):1101-1108.
  • [46]Ma J, Gou D, Liang L, Liu R, Chen X, Zhang C, et al.: Enhancement of succinate production by metabolically engineered Escherichia coli with co-expression of nicotinic acid phosphoribosyltransferase and pyruvate carboxylase. Appl Microbiol Biotechnol 2013, 97(15):6739-6747.
  • [47]Kandasamy V, Vaidyanathan H, Djurdjevic I, Jayamani E, Ramachandran KB, Buckel W, et al.: Engineering Escherichia coli with acrylate pathway genes for propionic acid synthesis and its impact on mixed-acid fermentation. Appl Microbiol Biotechnol 2013, 97(3):1191-1200.
  • [48]Zhu LW, Li XH, Zhang L, Li HM, Liu JH, Yuan ZP, et al.: Activation of glyoxylate pathway without the activation of its related gene in succinate-producing engineered Escherichia coli. Metab Eng 2013, 20:9-19.
  • [49]Sambrook J, Russell DW: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York; 2001.
  • [50]Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, et al.: A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol Syst Biol 2011, 7:535.
  • [51]Johansson T, Oswald C, Pedersen A, Törnroth S, Okvist M, Karlsson BG, et al.: X-ray structure of domain I of the proton-pumping membrane protein transhydrogenase from Escherichia coli. J Mol Biol 2005, 352(2):299-312.
  • [52]Orth JD (2012) Systems biology analysis of Escherichia coli for discovery and metabolic engineering. Ph.D. thesis, University of California, San Diego
  • [53]Lin Z, Xu Z, Li Y, Wang Z, Chen T, Zhao X: Metabolic engineering of Escherichia coli for the production of riboflavin. Microb Cell Fact 2012, 13:104.
  • [54]Fu J, Wang Z, Chen T, Liu W, Shi T, Wang G, et al.: NADH plays the vital role for chiral pure D-(-)-2,3-butanediol production in Bacillus subtilis under limited oxygen conditions. Biotechnol Bioeng 2014, 111(10):2126-2131.
  • [55]Li S, Xu N, Liu L, Chen J: Engineering of carboligase activity reaction in Candida glabrata for acetoin production. Metab Eng 2013, 22:32-39.
  文献评价指标  
  下载次数:86次 浏览次数:17次