期刊论文详细信息
Biotechnology for Biofuels
Cellulosomics of the cellulolytic thermophile Clostridium clariflavum
Lior Artzi1  Bareket Dassa1  Ilya Borovok2  Melina Shamshoum1  Raphael Lamed2  Edward A Bayer1 
[1] Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
[2] Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
关键词: Biofuels;    Biomass degradation;    Glycoside hydrolases;    CBM;    Scaffoldin;    Dockerin;    Cohesin;    Cellulases;    Cellulosomes;   
Others  :  1228593
DOI  :  10.1186/1754-6834-7-100
 received in 2014-03-12, accepted in 2014-06-12,  发布年份 2014
【 摘 要 】

Background

Clostridium clariflavum is an anaerobic, thermophilic, Gram-positive bacterium, capable of growth on crystalline cellulose as a single carbon source. The genome of C. clariflavum has been sequenced to completion, and numerous cellulosomal genes were identified, including putative scaffoldin and enzyme subunits.

Results

Bioinformatic analysis of the C. clariflavum genome revealed 49 cohesin modules distributed on 13 different scaffoldins and 79 dockerin-containing proteins, suggesting an abundance of putative cellulosome assemblies. The 13-scaffoldin system of C. clariflavum is highly reminiscent of the proposed cellulosome system of Acetivibrio cellulolyticus. Analysis of the C. clariflavum type I dockerin sequences indicated a very high level of conservation, wherein the putative recognition residues are remarkably similar to those of A. cellulolyticus. The numerous interactions among the cellulosomal components were elucidated using a standardized affinity ELISA-based fusion-protein system. The results revealed a rather simplistic recognition pattern of cohesin-dockerin interaction, whereby the type I and type II cohesins generally recognized the dockerins of the same type. The anticipated exception to this rule was the type I dockerin of the ScaB adaptor scaffoldin which bound selectively to the type I cohesins of ScaC and ScaJ.

Conclusions

The findings reveal an intricate picture of predicted cellulosome assemblies in C. clariflavum. The network of cohesin-dockerin pairs provides a thermophilic alternative to those of C. thermocellum and a basis for subsequent utilization of the C. clariflavum cellulosomal system for biotechnological application.

【 授权许可】

   
2014 Artzi et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 6. 106KB Image download
Figure 5. 87KB Image download
Figure 4. 77KB Image download
Figure 3. 196KB Image download
Figure 2. 193KB Image download
Figure 1. 103KB Image download
Figure 6. 106KB Image download
Figure 5. 87KB Image download
Figure 4. 77KB Image download
Figure 3. 196KB Image download
Figure 2. 193KB Image download
Figure 1. 103KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Bayer EA, Lamed R: The cellulose paradox: pollutant par excellence and/or a reclaimable natural resource? Biodegradation 1992, 3:171-188.
  • [2]Bayer EA, Lamed R, Himmel ME: The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opinion Biotechnol 2007, 18:237-245.
  • [3]Gilbert HJ: The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 2010, 153:444-455.
  • [4]Atalla RH: Celluloses. In Comprehensive natural products chemistry. Volume Volume 3. Edited by Pinto BM. Cambridge: Elsevier; 1999::529-598.
  • [5]O'Sullivan AC: Cellulose: the structure slowly unravels. Cellulose 1997, 4:173-207.
  • [6]Bayer EA, Shoham Y, Lamed R: Lignocellulose-decomposing bacteria and their enzyme systems. In The Prokaryotes. 4th edition. Edited by Rosenberg E. Berlin: Springer; 2013:216-266.
  • [7]Demain AL, Newcomb M, Wu JH: Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 2005, 69:124-154.
  • [8]Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T: The path forward for biofuels and biomaterials. Science 2006, 311:484-489.
  • [9]Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 2007, 315:804-807. Erratum: 316, 982
  • [10]Bayer EA, Morag E, Lamed R: The cellulosome - A treasure-trove for biotechnology. Trends Biotechnol 1994, 12:379-386.
  • [11]Bayer EA, Chanzy H, Lamed R, Shoham Y: Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 1998, 8:548-557.
  • [12]Bayer EA, Belaich J-P, Shoham Y, Lamed R: The cellulosomes: Multi-enzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 2004, 58:521-554.
  • [13]Bayer EA, Kenig R, Lamed R: Adherence of Clostridium thermocellum to cellulose. J Bacteriol 1983, 156:818-827.
  • [14]Lamed R, Setter E, Bayer EA: Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 1983, 156:828-836.
  • [15]Lamed R, Setter E, Kenig R, Bayer EA: The cellulosome - a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioeng Symp 1983, 13:163-181.
  • [16]Fontes CM, Gilbert HJ: Cellulosomes: Highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 2010, 79:655-681.
  • [17]Gerngross UT, Romaniec MPM, Kobayashi T, Huskisson NS, Demain AL: Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol Microbiol 1993, 8:325-334.
  • [18]Kakiuchi M, Isui A, Suzuki K, Fujino T, Fujino E, Kimura T, Karita S, Sakka K, Ohmiya K: Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome. J Bacteriol 1998, 180:4303-4308.
  • [19]Pagès S, Belaich A, Fierobe H-P, Tardif C, Gaudin C, Belaich J-P: Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXp. J Bacteriol 1999, 181:1801-1810.
  • [20]Shoseyov O, Takagi M, Goldstein MA, Doi RH: Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. Proc Natl Acad Sci USA 1992, 89:3483-3487.
  • [21]Ding S-Y, Bayer EA, Steiner D, Shoham Y, Lamed R: A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family-9 glycosyl hydrolase. J Bacteriol 1999, 181:6720-6729.
  • [22]Xu Q, Gao W, Ding S-Y, Kenig R, Shoham Y, Bayer EA, Lamed R: The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell-surface anchoring protein. J Bacteriol 2003, 185:4548-4557.
  • [23]Lemaire M, Ohayon H, Gounon P, Fujino T, Béguin P: OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope. J Bacteriol 1995, 177:2451-2459.
  • [24]Lupas A, Engelhardt H, Peters J, Santarius U, Volker S, Baumeister W: Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J Bacteriol 1994, 176:1224-1233.
  • [25]Poole DM, Morag E, Lamed R, Bayer EA, Hazlewood GP, Gilbert HJ: Identification of the cellulose binding domain of the cellulosome subunit S1 from Clostridium thermocellum. FEMS Microbiol Lett 1992, 99:181-186.
  • [26]Morag E, Lapidot A, Govorko D, Lamed R, Wilchek M, Bayer EA, Shoham Y: Expression, purification and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum. Appl Environ Microbiol 1995, 61:1980-1986.
  • [27]Shoseyov O, Shani Z, Levy I: Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 2006, 70:283-295.
  • [28]Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004, 382(Pt 3):769-781.
  • [29]Shiratori H, Ikeno H, Ayame S, Kataoka N, Miya A, Hosono K, Beppu T, Ueda K: Isolation and characterization of a new Clostridium sp. that performs effective cellulosic waste digestion in a thermophilic methanogenic bioreactor. Appl Environ Microbiol 2006, 72:3702-3709.
  • [30]Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K: Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int J Syst Evol Microbiol 2009, 59(Pt 7):1764-1770.
  • [31]Izquierdo JA, Goodwin L, Davenport KW, Teshima H, Bruce D, Detter C, Tapia R, Han S, Land M, Hauser L, Jeffries CD, Han J, Pitluck S, Nolan M, Chen A, Huntemann M, Mavromatis K, Mikhailova N, Liolios K, Woyke T, Lynd LR: Complete genome sequence of Clostridium clariflavum DSM 19732. Stand Genomic Sci 2012, 6:104-115.
  • [32]Khan AW: Cellulolytic enzyme system of Acetivibrio cellulolyticus, a newly isolated anaerobe. J Gen Microbiol 1980, 121:499-502.
  • [33]Patel GB, Khan AW, Agnew BJ, Colvin JR: Isolation and characterization of an anaerobic cellulolytic microorganism, Acetivibrio cellulolyticus, gen. nov., sp. nov. Int J Syst Bacteriol 1980, 30:179-185.
  • [34]Dassa B, Borovok I, Lamed R, Henrissat B, Coutinho P, Hemme CL, Huang Y, Zhou Z, Bayer EA: Genome-wide analysis of Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system. BMC Genomics 2012, 13:210.
  • [35]ClustalW2 – multiple sequence alignment program for DNA or proteins. http://www.ebi.ac.uk/Tools/msa/clustalw2/ webcite
  • [36]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 2013, 30:2725-2729.
  • [37]Xu Q, Barak Y, Kenig R, Shoham Y, Bayer EA, Lamed R: A novel Acetivibrio cellulolyticus anchoring scaffoldin that bears divergent cohesins. J Bacteriol 2004, 186:5782-5789.
  • [38]Adams JJ, Webb BA, Spencer HL, Smith SP: Structural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: Calcium-induced effects on conformation and target recognition. Biochemistry 2005, 44:2173-2182.
  • [39]Leibovitz E, Béguin P: A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA. J Bacteriol 1996, 178:3077-3084.
  • [40]Haimovitz R, Barak Y, Morag E, Voronov-Goldman M, Lamed R, Bayer EA: Cohesin-dockerin microarray: Diverse specificities between two complementary families of interacting protein modules. Proteomics 2008, 8:968-979.
  • [41]Gefen G, Anbar M, Morag E, Lamed R, Bayer EA: Enhanced degradation of cellulose by targeted incorporation of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome. Proc Natl Acad Sci USA 2012, 109:10298-10303.
  • [42]Pinheiro BA, Gilbert HJ, Sakka K, Fernandes VO, Prates JA, Alves VD, Bolam DN, Ferreira LM, Fontes CM: Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum. Biochem J 2009, 424:375-384.
  • [43]Simpson PJ, Hefang X, Bolam DN, Gilbert HJ, Williamson MP: The structural basis for the ligand specificity of Family 2 carbohydrate binding modules. J Biol Chem 2000, 52:41137-41142.
  • [44]Pagès S, Belaich A, Belaich J-P, Morag E, Lamed R, Shoham Y, Bayer EA: Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: Prediction of specificity determinants of the dockerin domain. Proteins 1997, 29:517-527.
  • [45]Mechaly A, Yaron S, Lamed R, Fierobe H-P, Belaich A, Belaich J-P, Shoham Y, Bayer EA: Cohesin-dockerin recognition in cellulosome assembly: Experiment versus hypothesis. Proteins 2000, 39:170-177.
  • [46]Mechaly A, Fierobe H-P, Belaich A, Belaich J-P, Lamed R, Shoham Y, Bayer EA: Cohesin-dockerin interaction in cellulosome assembly: A single hydroxyl group of a dockerin domain distinguishes between non-recognition and high-affinity recognition. J Biol Chem 2001, 276:9883-9888. Erratum 19678
  • [47]Barak Y, Handelsman T, Nakar D, Mechaly A, Lamed R, Shoham Y, Bayer EA: Matching fusion-protein systems for affinity analysis of two interacting families of proteins: The cohesin-dockerin interaction. J Mol Recogit 2005, 18:491-501.
  • [48]Lapidot A, Mechaly A, Shoham Y: Overexpression and single-step purification of a thermostable xylanase from Bacillus stearothermophilus T-6. J Biotechnol 1996, 51:259-264.
  • [49]Wu JHD, Orme-Johnson WH, Demain AL: Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystaline cellulose. Biochemistry 1988, 27:1703-1709.
  • [50]Gold ND, Martin VJ: Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J Bacteriol 2007, 189:6787-6795.
  • [51]Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR: Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS ONE 2009, 4:e5271.
  • [52]Dror TW, Morag E, Rolider A, Bayer EA, Lamed R, Shoham Y: Regulation of the cellulosomal celS (cel48A) gene of Clostridium thermocellum is growth-rate dependent. J Bacteriol 2003, 185:3042-3048.
  • [53]Gilbert HJ (Ed): Cellulases. San Diego: Elsevier; 2012.
  • [54]Morrison M, Daugherty SC, Nelson WC, Davidsen T, Nelson KE: The FibRumBa database: A resource for biologists with interests in gastrointestinal microbial ecology, plant biomass degradation, and anaerobic microbiology. Microb Ecol 2010, 59:212-213.
  • [55]Brown SD, Lamed R, Morag E, Borovok I, Shoham Y, Klingeman DM, Johnson CM, Yang Z, Land ML, Uttukar SM, Keller M, Bayer EA: Draft genome sequences for Clostridium thermocellum wild-type strain YS and derived cellulose adhesion-defective mutant strain AD2. J Bacteriol 2012, 194:3290-3291.
  • [56]Zepeda V, Dassa B, Borovok I, Lamed R, Bayer EA, Cate JH: Draft genome sequence of the cellulolytic bacterium Clostridium papyrosolvens C7 (ATCC 700395). Genome Announcements 2013, 1:e00698-13.
  • [57]Hemme CL, Mouttaki H, Lee YJ, Zhang G, Goodwin L, Lucas S, Copeland A, Lapidus A, del Rio Glavina T, Tice H, Saunders E, Brettin T, Detter JC, Han CS, Pitluck S, Land ML, Hauser LJ, Kyrpides N, Mikhailova N, He Z, Wu L, Van Nostrand JD, Henrissat B, He Q, Lawson PA, Tanner RS, Lynd LR, Wiegel J, Fields MW, Arkin AP, et al.: Sequencing of multiple clostridial genomes related to biomass conversion and biofuel production. J Bacteriol 2010, 192:6494-6496.
  • [58]Blumer-Schuette SE, Ozdemir I, Mistry D, Lucas S, Lapidus A, Cheng JF, Goodwin LA, Pitluck S, Land ML, Hauser LJ, Woyke T, Mikhailova N, Pati A, Kyrpides NC, Ivanova N, Detter JC, Walston-Davenport K, Han S, Adams MW, Kelly RM: Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus. J Bacteriol 2011, 193:1483-1484.
  • [59]Doi RH, Kosugi A: Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2004, 2:541-551.
  • [60]National Center for Biotechnology Information (NCBI) Website. http://www.ncbi.nlm.nih.gov/ webcite
  • [61]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 1997, 25:3389-3402.
  • [62]The ExPASy Bioinformatics Resource Portal. http://www.ch.embnet.org/software/ClustalW.html webcite
  • [63]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: A sequence logo generator. Genome Res 2004, 14:1188-1190.
  • [64]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active Enzymes database (CAZy): an expert resource for glycogenomics. Nucl Acids Res 2009, 37:D233-D238.
  • [65]Carbohydrate-Active enZYmes Database. http://www.cazy.org/ webcite
  • [66]Marmur J: A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961, 3:208-218.
  • [67]Handelsman T, Barak Y, Nakar D, Mechaly A, Lamed R, Shoham Y, Bayer EA: Cohesin-dockerin interaction in cellulosome assembly: A single Asp-to-Asn mutation disrupts high-affinity cohesin-dockerin binding. FEBS Lett 2004, 572:195-200.
  • [68]ProtParam tool – computation of various physical and chemical parameters for a given protein. http://web.expasy.org/protparam/ webcite
  • [69]Motulsky HJ, Christopoulos A: Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. San Diego, CA: GraphPad Software Inc.; 2003.
  文献评价指标  
  下载次数:105次 浏览次数:22次