期刊论文详细信息
Chemistry Central Journal
A fingerprint pair analysis of hERG inhibition data
Clayton Springer1  Katherine L Sokolnicki1 
[1] Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, MA 02139, USA
关键词: Extended connectivity fingerprints (ECFP);    Cliff pairs;    Molecular matched pairs;    Hydroxyl;    Molecular pair;    hERG;    Fingerprint pairs;   
Others  :  787827
DOI  :  10.1186/1752-153X-7-167
 received in 2013-06-20, accepted in 2013-09-10,  发布年份 2013
PDF
【 摘 要 】

Background

Drugs that bind to the human Ether-a-go-go Related Gene (hERG) potassium channel and block its ion conduction can lead to Torsade de Pointes (TdP), a fatal ventricular arrhythmia. Thus, compounds are screened for hERG inhibition in the drug development process; those found to be active face a difficult road to approval. Knowing which structural transformations reduce hERG binding would be helpful in the lead optimization phase of drug discovery.

Results

To identify such transformations, we carried out a comprehensive analysis of all approximately 33,000 compound pairs in the Novartis internal database which have IC50 values in the dofetilide displacement assay. Most molecular transformations have only a single example in the data set; however, a few dozen transformations have sufficient numbers for statistical analysis.

Conclusions

We observe that transformations which increased polarity (for example adding an oxygen, or an sp2 nitrogen), decreased lipophilicity (removing carbons), or decreased positive charge consistently reduced hERG inhibition between 3- and 10-fold. The largest observed reduction in hERG was from a transformation from imidazole to methyl tetrazole. We also observe that some changes in aromatic ring substituents (for example hydrogen to methoxy) can also reduce hERG binding in vitro.

【 授权许可】

   
2013 Springer and Sokolnicki; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140702202306447.pdf 845KB PDF download
Figure 8. 71KB Image download
Figure 7. 34KB Image download
Figure 6. 42KB Image download
Figure 5. 22KB Image download
Figure 4. 37KB Image download
Figure 3. 18KB Image download
Figure 2. 28KB Image download
Figure 1. 38KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Sanguinetti MC, Jiang C, Curran ME, Keating MT: A mechanistic link between an inherited and an acquired cardiac arrthytmia: HERG encodes the IKr potassium channel. Cell 1995, 81(2):299-307.
  • [2]Redfern WS, Wakefield ID, Prior H, Pollard CE, Hammond TG, Valentin JP: Safety pharmacology - a progressive approach. Fundam Clin Pharmacol 2002, 16(3):161-173.
  • [3]Roy M: HERG, a primary human ventricular target of the nonsedating antihistamine terfenadine. Circulation 1996, 94(4):817.
  • [4]Whitebread S, Hamon J, Bojanic D, Urban L: Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov today 2005, 10(21):1421-1433.
  • [5]Duda RO, Hart PE, Stork DG: Pattern classification. Hoboken NJ: Wiley-Interscience; 2000.
  • [6]Hastie T, Tibshirani R, Friedman J: The Elements of Statistical Learning: data mining, inference, and prediction. 2nd edition. Berlin: Springer-Verlag; 2009.
  • [7]Keserü GM: Prediction of hERG potassium channel affinity by traditional and hologram QSAR methods. Bioorg Med Chem Lett 2003, 13:2773-2775.
  • [8]Seierstad M, Agrafiotis D: A QSAR model of hERG binding using a large, diverse, and internally consistent training Set. Chem Biol Drug Des 2006, 67(4):284-296.
  • [9]Maggiora GM: On outliers and activity cliffs – Why QSAR often disappoints. J Chem Inf Model 2006, 46(4):1535.
  • [10]Guha R, Van Drie JH: Structure-activity landscape index: identifying and quantifying activity cliffs. J Chem Inf Model 2008, 48(3):646-658.
  • [11]Van Drie JH, Guha R: Assessing how well a modeling protocol captures a structure activity landscape. J Chem Inf Model 2008, 48(8):1716-1728.
  • [12]Sheridan RP, Hunt P, Culberson JC: Molecular transformations as a way of finding and exploiting consistent local QSAR. J Chem Inf Model 2006, 46(1):180-192.
  • [13]Jamieson C, Moir EM, Rankovic Z, Wishart G: Medicinal chemistry of hERG optimizations: highlights and hang-Ups. J Med Chem 2006, 49(17):5029-5046.
  • [14]Leach AG, Jones HD, Cosgrove DA, Kenny PW, Ruston L, MacFaul P, Wood JM, Colclough N, Law B: Matched molecular pairs as a guide in the optimization of pharmaceutical properties; a study of aqueous solubility, plasma protein binding and oral exposure. J Med Chem 2006, 49(23):6672-6682.
  • [15]Papadatos G, Alkarouri M, Gillet VJ, Willett P, Kadirkamanathan V, Luscombe CN, Bravi G, Richmond NJ, Pickett SD, Hussain J, Pritchard JM, Cooper AWJ, Macdonald SJF: Lead optimization using matched molecular pairs: inclusion of contextual information for enhanced prediction of hERG inhibition, solubility, and lipophilicity. J Chem Inf Model 2010, 50(10):1872-1886.
  • [16]Grimme S: Do special noncovalent π–π stacking interactions really exist? Angew Chem 2008, 47(18):3430-3434.
  • [17]Perrin CL, Fabian MA, Rivero I: Basicities of cycloalkylamines: baeyer strain theory revisited. Tetrahedron 2012, 55:5773-5780.
  • [18]Wildman SA, Crippen GM: Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comput Sci 1999, 39(5):868-873.
  • [19]Ertl P: Fast calculation of molecular polar surface area as a Sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 2000, 43:3714-3717.
  • [20]Lipkowitz KB, Boyd DB, Hall LH, Kier LB: “The molecular connectivity Chi indexes and kappa shape indexes in structure property modeling” in Reviews. Comput Chem 1991, 2:367-422.
  • [21]Pearlman RS, Smith KM: Novel software tools for chemical diversity. In 3D QSAR in drug design, 2. Edited by Kubinyi H, Folkers G, Martin YC. Dordrecht: Kluwer Academic Publishers; 2002.
  • [22]Finlayson K, Turnbull L, January CT, Sharkey J, Kelly JS: [3H]Dofetilide binding to HERG transfected membranes: a potential high throughput preclinical screen. Eur J Pharmacol 2001, 430(1):147-148.
  • [23]Rogers D, Hahn M: Extended-connectivity fingerprints. J Chem Inf Model 2010, 50(5):742-754.
  • [24]Glick M: Comparison of 2D-based descriptors for virtual screening using multiple bioactive reference structures. Chemogenomics: an emerging strategy for rapid target and drug discovery 2006, 133-156.
  • [25]Hussain J, Rea C: Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J Chem Inf Model 2010, 50(3):339-348.
  • [26]Chemical Computing Group Inc: MOE (the molecular operating environment) version 2009.10. Montreal, Canada: Chemical Computing Group; 2012.
  文献评价指标  
  下载次数:69次 浏览次数:0次