期刊论文详细信息
BMC Biotechnology
Gene delivery to pancreatic exocrine cells in vivo and in vitro
Isabelle Houbracken2  Luc Baeyens3  Philippe Ravassard1  Harry Heimberg3  Luc Bouwens2 
[1] Inserm, U 975, Paris, 75013, France
[2] Cell Differentiation Lab, Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, B-1090, Belgium
[3] Beta Cell Neogenesis Lab, Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, B-1090, Belgium
关键词: Acinar cell;    Pancreas;    Gene transfer;    Lipofection;    Adenoviral vector;    Lentiviral vector;   
Others  :  1134758
DOI  :  10.1186/1472-6750-12-74
 received in 2012-06-25, accepted in 2012-10-19,  发布年份 2012
PDF
【 摘 要 】

Background

Effective gene transfer to the pancreas or to pancreatic cells has remained elusive although it is essential for studies of genetic lineage tracing and modulation of gene expression. Different transduction methods and viral vectors were tested in vitro and in vivo, in rat and mouse pancreas.

Results

For in vitro transfection/transduction of rat exocrine cells lipofection reagents, adenoviral vectors, and Mokola- and VSV-G pseudotyped lentiviral vectors were used. For in vivo transduction of mouse and rat pancreas adenoviral vectors and VSV-G lentiviral vectors were injected into the parenchymal tissue. Both lipofection of rat exocrine cell cultures and transduction with Mokola pseudotyped lentiviral vectors were inefficient and resulted in less than 4% EGFP expressing cells. Adenoviral transduction was highly efficient but its usefulness for gene delivery to rat exocrine cells in vitro was hampered by a drastic increase in cell death. In vitro transduction of rat exocrine cells was most optimal with VSV-G pseudotyped lentiviral vectors, with stable transgene expression, no significant effect on cell survival and about 40% transduced cells. In vivo, pancreatic cells could not be transduced by intra-parenchymal administration of lentiviral vectors in mouse and rat pancreas. However, a high efficiency could be obtained by adenoviral vectors, resulting in transient transduction of mainly exocrine acinar cells. Injection in immune-deficient animals diminished leukocyte infiltration and prolonged transgene expression.

Conclusions

In summary, our study remarkably demonstrates that transduction of pancreatic exocrine cells requires lentiviral vectors in vitro but adenoviral vectors in vivo.

【 授权许可】

   
2012 Houbracken et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150306062926162.pdf 3210KB PDF download
Figure 5. 789KB Image download
Figure 4. 708KB Image download
Figure 3. 692KB Image download
Figure 2. 685KB Image download
Figure 1. 594KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Kim SK, Hebrok M: Intercellular signals regulating pancreas development and function. Genes Dev 2001, 15(2):111-127.
  • [2]Lardon J, Bouwens L: Metaplasia in the pancreas. Differentiation 2005, 73(6):278-286.
  • [3]Jemal A, Siegel R, Xu J, Ward E: Cancer Statistics, 2010. CA Cancer J Clin 2010, 60(5):277-300.
  • [4]Morris JP, Cano DA, Sekine S, Wang SC, Hebrok M: Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest 2010, 120(2):508-520.
  • [5]De La OJ, Emerson LL, Goodman JL, Froebe SC, Illum BE, Curtis AB, Murtaugh LC: Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci USA 2008, 105(48):18907-18912.
  • [6]Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, Dubus P, Sandgren EP, Barbacid M: Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 2007, 11(3):291-302.
  • [7]Habbe N, Shi G, Meguid RA, Fendrich V, Esni F, Chen H, Feldmann G, Stoffers DA, Konieczny SF, Leach SD, Maitra A: Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc Natl Acad Sci USA 2008, 105(48):18913-18918.
  • [8]Shi G, Zhu L, Sun Y, Bettencourt R, Damsz B, Hruban RH, Konieczny SF: Loss of the acinar-restricted transcription factor Mist1 accelerates Kras-induced pancreatic intraepithelial neoplasia. Gastroenterology 2009, 136(4):1368-1378.
  • [9]Strobel O, Dor Y, Alsina J, Stirman A, Lauwers G, Trainor A, Castillo CF, Warshaw AL, Thayer SP: In vivo lineage tracing defines the role of acinar-to-ductal transdifferentiation in inflammatory ductal metaplasia. Gastroenterology 2007, 133(6):1999-2009.
  • [10]Blaine SA, Ray KC, Anunobi R, Gannon MA, Washington MK, Means AL: Adult pancreatic acinar cells give rise to ducts but not endocrine cells in response to growth factor signaling. Development 2010, 137(14):2289-2296.
  • [11]Means AL, Meszoely IM, Suzuki K, Miyamoto Y, Rustgi AK, Coffey RJ Jr, Wright CV, Stoffers DA, Leach SD: Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development 2005, 132(16):3767-3776.
  • [12]Rooman I, Heremans Y, Heimberg H, Bouwens L: Modulation of rat pancreatic acinoductal transdifferentiation and expression of PDX-1 in vitro. Diabetologia 2000, 43(7):907-914.
  • [13]Houbracken I, Waele ED, Lardon J, Ling Z, Heimberg H, Rooman I, Bouwens L: Lineage Tracing Evidence for Transdifferentiation of Acinar to Duct Cells and Plasticity of Human Pancreas. Gastroenterology 2011, 141(2):731-741. 741e1-4
  • [14]Baeyens L, Bonne S, Bos T, Rooman I, Peleman C, Lahoutte T, German M, Heimberg H, Bouwens L: Notch signaling as gatekeeper of rat acinar-to-beta-cell conversion in vitro. Gastroenterology 2009, 136(5):1750-1760. e1713
  • [15]Minami K, Okuno M, Miyawaki K, Okumachi A, Ishizaki K, Oyama K, Kawaguchi M, Ishizuka N, Iwanaga T, Seino S: Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci USA 2005, 102(42):15116-15121.
  • [16]Okuno M, Minami K, Okumachi A, Miyawaki K, Yokoi N, Toyokuni S, Seino S: Generation of insulin-secreting cells from pancreatic acinar cells of animal models of type 1 diabetes. Am J Physiol Endocrinol Metab 2007, 292(1):E158-E165.
  • [17]Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008, 455(7213):627-632.
  • [18]Lardon J, De Breuck S, Rooman I, Van Lommel L, Kruhoffer M, Orntoft T, Schuit F, Bouwens L: Plasticity in the adult rat pancreas: transdifferentiation of exocrine to hepatocyte-like cells in primary culture. Hepatology 2004, 39(6):1499-1507.
  • [19]Wu SY, Hsieh CC, Wu RR, Susanto J, Liu TT, Shen CR, Chen Y, Su CC, Chang FP, Chang HM, Tosh D, Shen CN: Differentiation of pancreatic acinar cells to hepatocytes requires an intermediate cell type. Gastroenterology 2010, 138(7):2519-2530.
  • [20]Bonal C, Thorel F, Ait-Lounis A, Reith W, Trumpp A, Herrera PL: Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 2009, 136(1):309-319. e309
  • [21]Han B, Logsdon CD: Cholecystokinin induction of mob-1 chemokine expression in pancreatic acinar cells requires NF-kappaB activation. Am J Physiol 1999, 277(1 Pt 1):C74-C82.
  • [22]Li C, Chen X, Williams JA: Regulation of CCK-induced amylase release by PKC-delta in rat pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2004, 287(4):G764-G771.
  • [23]Padfield PJ, Elliott AC, Baldassare JJ: Adenovirus-mediated gene expression in isolated rat pancreatic acini and individual pancreatic acinar cells. Pflugers Arch 1998, 436(5):782-787.
  • [24]Pujal J, Huch M, Jose A, Abasolo I, Rodolosse A, Duch A, Sanchez-Palazon L, Smith FJ, McLean WH, Fillat C, Real FX: Keratin 7 promoter selectively targets transgene expression to normal and neoplastic pancreatic ductal cells in vitro and in vivo. FASEB J 2009, 23(5):1366-1375.
  • [25]Simeone DM, Zhang L, Graziano K, Nicke B, Pham T, Schaefer C, Logsdon CD: Smad4 mediates activation of mitogen-activated protein kinases by TGF-beta in pancreatic acinar cells. Am J Physiol Cell Physiol 2001, 281(1):C311-C319.
  • [26]Wang AY, Ehrhardt A, Xu H, Kay MA: Adenovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. Mol Ther 2007, 15(2):255-263.
  • [27]Wang AY, Peng PD, Ehrhardt A, Storm TA, Kay MA: Comparison of adenoviral and adeno-associated viral vectors for pancreatic gene delivery in vivo. Hum Gene Ther 2004, 15(4):405-413.
  • [28]Zhang L, Graziano K, Pham T, Logsdon CD, Simeone DM: Adenovirus-mediated gene transfer of dominant-negative Smad4 blocks TGF-beta signaling in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2001, 280(6):G1247-G1253.
  • [29]Chou FC, Sytwu HK: Overexpression of thioredoxin in islets transduced by a lentiviral vector prolongs graft survival in autoimmune diabetic NOD mice. J Biomed Sci 2009, 16:71. BioMed Central Full Text
  • [30]He Z, Wang F, Kumagai-Braesch M, Permert J, Holgersson J: Long-term gene expression and metabolic control exerted by lentivirus-transduced pancreatic islets. Xenotransplantation 2006, 13(3):195-203.
  • [31]Kobinger GP, Deng S, Louboutin JP, Vatamaniuk M, Matschinsky F, Markmann JF, Raper SE, Wilson JM: Transduction of human islets with pseudotyped lentiviral vectors. Hum Gene Ther 2004, 15(2):211-219.
  • [32]Russ HA, Bar Y, Ravassard P, Efrat S: In vitro proliferation of cells derived from adult human beta-cells revealed by cell-lineage tracing. Diabetes 2008, 57(6):1575-1583.
  • [33]Russ HA, Ravassard P, Kerr-Conte J, Pattou F, Efrat S: Epithelial-mesenchymal transition in cells expanded in vitro from lineage-traced adult human pancreatic beta cells. PLoS One 2009, 4(7):e6417.
  • [34]Xu X, D’Hoker J, Stange G, Bonne S, De Leu N, Xiao X, Van de Casteele M, Mellitzer G, Ling Z, Pipeleers D, Bouwens L, Scharfmann R, Gradwohl G, Heimberg H: Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008, 132(2):197-207.
  • [35]Cheng H, Wolfe SH, Valencia V, Qian K, Shen L, Phillips MI, Chang LJ, Zhang YC: Efficient and persistent transduction of exocrine and endocrine pancreas by adeno-associated virus type 8. J Biomed Sci 2007, 14(5):585-594.
  • [36]Jimenez V, Ayuso E, Mallol C, Agudo J, Casellas A, Obach M, Munoz S, Salavert A, Bosch F: In vivo genetic engineering of murine pancreatic beta cells mediated by single-stranded adeno-associated viral vectors of serotypes 6, 8 and 9. Diabetologia 2011, 54(5):1075-1086.
  • [37]Wang Z, Zhu T, Rehman KK, Bertera S, Zhang J, Chen C, Papworth G, Watkins S, Trucco M, Robbins PD, Li J, Xiao X: Widespread and stable pancreatic gene transfer by adeno-associated virus vectors via different routes. Diabetes 2006, 55(4):875-884.
  • [38]Hong J, Behar J, Wands J, Resnick M, Wang LJ, DeLellis RA, Lambeth D, Souza RF, Spechler SJ, Cao W: Role of a novel bile acid receptor TGR5 in the development of oesophageal adenocarcinoma. Gut 2010, 59(2):170-180.
  • [39]Steinstraesser L, Hirsch T, Beller J, Mittler D, Sorkin M, Pazdierny G, Jacobsen F, Eriksson E, Steinau HU: Transient non-viral cutaneous gene delivery in burn wounds. J Gene Med 2007, 9(11):949-955.
  • [40]Zhang W, Zhang Y, Sood R, Ranjan S, Surovtseva E, Ahmad A, Kinnunen PK, Pyykko I, Zou J: Visualization of intracellular trafficking of Math1 protein in different cell types with a newly-constructed nonviral gene delivery plasmid. J Gene Med 2011, 13(2):134-144.
  • [41]Zhang Y, Song M, Cui ZS, Li CY, Xue XX, Yu M, Lu Y, Zhang SY, Wang EH, Wen YY: Down-regulation of TSG101 by small interfering RNA inhibits the proliferation of breast cancer cells through the MAPK/ERK signal pathway. Histol Histopathol 2011, 26(1):87-94.
  • [42]Mahato RI, Henry J, Narang AS, Sabek O, Fraga D, Kotb M, Gaber AO: Cationic lipid and polymer-based gene delivery to human pancreatic islets. Mol Ther 2003, 7(1):89-100.
  • [43]Baeyens L, De Breuck S, Lardon J, Mfopou JK, Rooman I, Bouwens L: In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 2005, 48(1):49-57.
  • [44]Saldeen J, Curiel DT, Eizirik DL, Andersson A, Strandell E, Buschard K, Welsh N: Efficient gene transfer to dispersed human pancreatic islet cells in vitro using adenovirus-polylysine/DNA complexes or polycationic liposomes. Diabetes 1996, 45(9):1197-1203.
  • [45]Maurisse R, De Semir D, Emamekhoo H, Bedayat B, Abdolmohammadi A, Parsi H, Gruenert DC: Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol 2010, 10:9. BioMed Central Full Text
  • [46]Young AT, Lakey JR, Murray AG, Moore RB: Gene therapy: a lipofection approach for gene transfer into primary endothelial cells. Cell Transplant 2002, 11(6):573-582.
  • [47]Zhang M, He W, Liu F, Zou P, Xiao J, Zhong ZD, Hu ZB: Inhibition of mouse hepatocyte apoptosis via anti-Fas ribozyme. World J Gastroenterol 2004, 10(17):2567-2570.
  • [48]Uchida E, Mizuguchi H, Ishii-Watabe A, Hayakawa T: Comparison of the efficiency and safety of non-viral vector-mediated gene transfer into a wide range of human cells. Biol Pharm Bull 2002, 25(7):891-897.
  • [49]Colin A, Faideau M, Dufour N, Auregan G, Hassig R, Andrieu T, Brouillet E, Hantraye P, Bonvento G, Deglon N: Engineered lentiviral vector targeting astrocytes in vivo. Glia 2009, 57(6):667-679.
  • [50]Desmaris N, Bosch A, Salaun C, Petit C, Prevost MC, Tordo N, Perrin P, Schwartz O, de Rocquigny H, Heard JM: Production and neurotropism of lentivirus vectors pseudotyped with lyssavirus envelope glycoproteins. Mol Ther 2001, 4(2):149-156.
  • [51]Watson DJ, Kobinger GP, Passini MA, Wilson JM, Wolfe JH: Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol Ther 2002, 5(5 Pt 1):528-537.
  • [52]MacKenzie TC, Kobinger GP, Kootstra NA, Radu A, Sena-Esteves M, Bouchard S, Wilson JM, Verma IM, Flake AW: Efficient transduction of liver and muscle after in utero injection of lentiviral vectors with different pseudotypes. Mol Ther 2002, 6(3):349-358.
  • [53]MacKenzie TC, Kobinger GP, Louboutin JP, Radu A, Javazon EH, Sena-Esteves M, Wilson JM, Flake AW: Transduction of satellite cells after prenatal intramuscular administration of lentiviral vectors. J Gene Med 2005, 7(1):50-58.
  • [54]Hachiya A, Sriwiriyanont P, Patel A, Saito N, Ohuchi A, Kitahara T, Takema Y, Tsuboi R, Boissy RE, Visscher MO, Wilson JM, Kobinger GP: Gene transfer in human skin with different pseudotyped HIV-based vectors. Gene Ther 2007, 14(8):648-656.
  • [55]Auricchio A, Kobinger G, Anand V, Hildinger M, O’Connor E, Maguire AM, Wilson JM, Bennett J: Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet 2001, 10(26):3075-3081.
  • [56]Bemelmans AP, Bonnel S, Houhou L, Dufour N, Nandrot E, Helmlinger D, Sarkis C, Abitbol M, Mallet J: Retinal cell type expression specificity of HIV-1-derived gene transfer vectors upon subretinal injection in the adult rat: influence of pseudotyping and promoter. J Gene Med 2005, 7(10):1367-1374.
  • [57]Duisit G, Conrath H, Saleun S, Folliot S, Provost N, Cosset FL, Sandrin V, Moullier P, Rolling F: Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Mol Ther 2002, 6(4):446-454.
  • [58]Limberis MP, Bell CL, Heath J, Wilson JM: Activation of transgene-specific T cells following lentivirus-mediated gene delivery to mouse lung. Mol Ther 2010, 18(1):143-150.
  • [59]Kay MA, Li Q, Liu TJ, Leland F, Toman C, Finegold M, Woo SL: Hepatic gene therapy: persistent expression of human alpha 1-antitrypsin in mice after direct gene delivery in vivo. Hum Gene Ther 1992, 3(6):641-647.
  • [60]Croyle MA, Callahan SM, Auricchio A, Schumer G, Linse KD, Wilson JM, Brunner LJ, Kobinger GP: PEGylation of a vesicular stomatitis virus G pseudotyped lentivirus vector prevents inactivation in serum. J Virol 2004, 78(2):912-921.
  • [61]DePolo NJ, Reed JD, Sheridan PL, Townsend K, Sauter SL, Jolly DJ, Dubensky TW Jr: VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol Ther 2000, 2(3):218-222.
  • [62]Guibinga GH, Friedmann T: Preparation of pseudotyped lentiviral vectors resistant to inactivation by serum complement. Cold Spring Harb Protoc 2010, 8:pdb prot5420.
  • [63]Higashikawa F, Chang L: Kinetic analyses of stability of simple and complex retroviral vectors. Virology 2001, 280(1):124-131.
  • [64]Chen X, Ji B, Han B, Ernst SA, Simeone D, Logsdon CD: NF-kappaB activation in pancreas induces pancreatic and systemic inflammatory response. Gastroenterology 2002, 122(2):448-457.
  • [65]Chuah MK, Collen D, VandenDriessche T: Biosafety of adenoviral vectors. Curr Gene Ther 2003, 3(6):527-543.
  • [66]Durham HD, Lochmuller H, Jani A, Acsadi G, Massie B, Karpati G: Toxicity of replication-defective adenoviral recombinants in dissociated cultures of nervous tissue. Exp Neurol 1996, 140(1):14-20.
  • [67]Braithwaite AW, Russell IA: Induction of cell death by adenoviruses. Apoptosis 2001, 6(5):359-370.
  • [68]Barbu AR, Akusjarvi G, Welsh N: Adenoviral-mediated transduction of human pancreatic islets: importance of adenoviral genome for cell viability and association with a deficient antiviral response. Endocrinology 2005, 146(5):2406-2414.
  • [69]Zheng C, Goldsmith CM, O’Connell BC, Baum BJ: Adenoviral vector cytotoxicity depends in part on the transgene encoded. Biochem Biophys Res Commun 2000, 274(3):767-771.
  • [70]He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B: A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998, 95(5):2509-2514.
  • [71]Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P: HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 2000, 101(2):173-185.
  • [72]Naldini L, Blomer U, Gage FH, Trono D, Verma IM: Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 1996, 93(21):11382-11388.
  • [73]Castaing M, Guerci A, Mallet J, Czernichow P, Ravassard P, Scharfmann R: Efficient restricted gene expression in beta cells by lentivirus-mediated gene transfer into pancreatic stem/progenitor cells. Diabetologia 2005, 48(4):709-719.
  • [74]Scherr M, Battmer K, Blomer U, Ganser A, Grez M: Quantitative determination of lentiviral vector particle numbers by real-time PCR. Biotechniques 2001, 31(3):520-522. 524, passim
  文献评价指标  
  下载次数:48次 浏览次数:7次