期刊论文详细信息
BioData Mining
Testing multiple hypotheses through IMP weighted FDR based on a genetic functional network with application to a new zebrafish transcriptome study
Jiang Gui3  Casey S. Greene2  Con Sullivan4  Walter Taylor2  Jason H. Moore1  Carol Kim4 
[1] Department of Biostatistics and Epidemiology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
[2] Department of Genetics, Geisel school of medicine, Dartmouth College, Hanover, NH, USA
[3] Dartmouth-Hitchcock Medical Center, 883 Rubin Bldg, HB7927, One Medical Center Dr., Lebanon, NH, USA
[4] Graduate School of Biomedical Science and Engineeering, University of Maine, Orono, ME, USA
关键词: Data integration;    Genomic studies;    Family-wise error rate;    False discovery rate;   
Others  :  1216986
DOI  :  10.1186/s13040-015-0050-8
 received in 2014-12-03, accepted in 2015-06-08,  发布年份 2015
PDF
【 摘 要 】

In genome-wide studies, hundreds of thousands of hypothesis tests are performed simultaneously. Bonferroni correction and False Discovery Rate (FDR) can effectively control type I error but often yield a high false negative rate. We aim to develop a more powerful method to detect differentially expressed genes. We present a Weighted False Discovery Rate (WFDR) method that incorporate biological knowledge from genetic networks. We first identify weights using Integrative Multi-species Prediction (IMP) and then apply the weights in WFDR to identify differentially expressed genes through an IMP-WFDR algorithm. We performed a gene expression experiment to identify zebrafish genes that change expression in the presence of arsenic during a systemic Pseudomonas aeruginosa infection. Zebrafish were exposed to arsenic at 10 parts per billion and/or infected with P. aeruginosa. Appropriate controls were included. We then applied IMP-WFDR during the analysis of differentially expressed genes. We compared the mRNA expression for each group and found over 200 differentially expressed genes and several enriched pathways including defense response pathways, arsenic response pathways, and the Notch signaling pathway.

【 授权许可】

   
2015 Gui et al.

【 预 览 】
附件列表
Files Size Format View
20150704012556513.pdf 1118KB PDF download
Fig. 3. 52KB Image download
Fig. 2. 32KB Image download
Fig. 1. 71KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008, 18(9):1509-1517.
  • [2]Bonferroni CE. Il calcolo delle assicurazioni su gruppi di teste. Tipografia del Senato; 1935.
  • [3]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 1995, 57(1):289-300.
  • [4]Smyth GK. Limma: Linear models for microarray data. In: Bioinformatics and computational biology solutions using R and Bioconductor. Springer; 2005. p. 397–420.
  • [5]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28(5):511-515.
  • [6]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106. BioMed Central Full Text
  • [7]Gui J, Tosteson TD, Borsuk M: Weighted multiple testing procedures for genomic studies. BioData Min 2012, 5(1):4.
  • [8]Genovese CR, Roeder K, Wasserman L: False discovery control with p-value weighting. Biometrika 2006, 93(3):509-524.
  • [9]Wong AK, Park CY, Greene CS, Bongo LA, Guan Y, Troyanskaya OG: IMP: A multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Res 2012, 40(Web Server issue):W484-90.
  • [10]Park CY, Wong AK, Greene CS, Rowland J, Guan Y, Bongo LA, Burdine RD, Troyanskaya OG: Functional knowledge transfer for high-accuracy prediction of under-studied biological processes. PLoS computational biology 2013., 9(3) Article ID e1002957
  • [11]Huttenhower C, Haley EM, Hibbs MA, Dumeaux V, Barrett DR, Coller HA, Troyanskaya OG: Exploring the human genome with functional maps. Genome Res 2009, 19(6):1093-1106.
  • [12]Young RL, Malcolm KC, Kret JE, Caceres SM, Poch KR, Nichols DP, Taylor-Cousar JL, Saavedra MT, Randell SH, Vasil ML: Neutrophil extracellular trap (NET)-mediated killing of pseudomonas aeruginosa: Evidence of acquired resistance within the CF airway, independent of CFTR. PLoS One 2011., 6(9) Article ID e23637
  • [13]Bomberger JM, Coutermarsh BA, Barnaby RL, Stanton BA: Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells. J Biol Chem 2012, 287(21):17130-17139.
  • [14]Shaw JR, Bomberger JM, VanderHeide J, LaCasse T, Stanton S, Coutermarsh B, Barnaby R, Stanton BA: Arsenic inhibits SGK1 activation of CFTR cl< sup>− channels in the gill of killifish,< i> fundulus heteroclitus. Aquatic toxicology 2010, 98(2):157-164.
  • [15]Nayak AS, Lage CR, Kim CH: Effects of low concentrations of arsenic on the innate immune system of the zebrafish (danio rerio). Toxicol Sci 2007, 98(1):118-124.
  • [16]Hibbs MA, Myers CL, Huttenhower C, Hess DC, Li K, Caudy AA, Troyanskaya OG: Directing experimental biology: A case study in mitochondrial biogenesis. PLoS computational biology 2009., 5(3) Article ID e1000322
  • [17]Guan Y, Myers CL, Lu R, Lemischka IR, Bult CJ, Troyanskaya OG: A genomewide functional network for the laboratory mouse. PLoS computational biology 2008., 4(9) Article ID e1000165
  • [18]Lage CR, Nayak A, Kim CH: Arsenic ecotoxicology and innate immunity. Integr Comp Biol 2006, 46(6):1040-1054.
  • [19]Hermann AC, Kim CH: Effects of arsenic on zebrafish innate immune system. Marine Biotechnology 2005, 7(5):494-505.
  • [20]Phennicie RT, Sullivan MJ, Singer JT, Yoder JA, Kim CH: Specific resistance to pseudomonas aeruginosa infection in zebrafish is mediated by the cystic fibrosis transmembrane conductance regulator. Infect Immun 2010, 78(11):4542-4550.
  • [21]Hamming OJ, Lutfalla G, Levraud JP, Hartmann R: Crystal structure of zebrafish interferons I and II reveals conservation of type I interferon structure in vertebrates. J Virol 2011, 85(16):8181-8187.
  • [22]Bradley LM, Douglass MF, Chatterjee D, Akira S, Baaten BJ: Matrix metalloprotease 9 mediates neutrophil migration into the airways in response to influenza virus-induced toll-like receptor signaling. PLoS pathogens 2012., 8(4) Article ID e1002641
  • [23]Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, Robinson MD: Count-based differential expression analysis of RNA sequencing data using R and bioconductor. Nature protocols 2013, 8(9):1765-1786.
  • [24]Roeder K, Wasserman L: Genome-wide significance levels and weighted hypothesis testing. Stat Sci 2009, 24(4):398-413.
  文献评价指标  
  下载次数:65次 浏览次数:14次