期刊论文详细信息
BMC Bioinformatics
In silico evaluation of the influence of the translocon on partitioning of membrane segments
Dominique Tessier1  Sami Laroum3  Béatrice Duval3  Emma M Rath2  W Bret Church2  Jin-Kao Hao3 
[1] INRA, UR1268 Biopolymères Interactions et Assemblages, Nantes F-44316, France
[2] Group in Biomolecular Structure and Informatics, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
[3] LERIA, 2 Boulevard Lavoisier, Angers 49045, France
关键词: Local search algorithm;    Transmembrane helix prediction;    Translocon;   
Others  :  1087571
DOI  :  10.1186/1471-2105-15-156
 received in 2013-10-25, accepted in 2014-05-14,  发布年份 2014
PDF
【 摘 要 】

Background

The locations of the TM segments inside the membrane proteins are the consequence of a cascade of several events: the localizing of the nascent chain to the membrane, its insertion through the translocon, and the conformation adopted to reach its stable state inside the lipid bilayer. Even though the hydrophobic h-region of signal peptides and a typical TM segment are both composed of mostly hydrophobic side chains, the translocon has the ability to determine whether a given segment is to be inserted into the membrane. Our goal is to acquire robust biological insights into the influence of the translocon on membrane insertion of helices, obtained from the in silico discrimination between signal peptides and transmembrane segments of bitopic proteins. Therefore, by exploiting this subtle difference, we produce an optimized scale that evaluates the tendency of each amino acid to form sequences destined for membrane insertion by the translocon.

Results

The learning phase of our approach is conducted on carefully chosen data and easily converges on an optimal solution called the PMIscale (Potential Membrane Insertion scale). Our study leads to two striking results. Firstly, with a very simple sliding-window prediction method, PMIscale enables an efficient discrimination between signal peptides and signal anchors. Secondly, PMIscale is also able to identify TM segments and to localize them within protein sequences.

Conclusions

Despite its simplicity, the localization method based on PMIscale nearly attains the highest level of TM topography prediction accuracy as the current state-of-the-art prediction methods. These observations confirm the prominent role of the translocon in the localization of TM segments and suggest several biological hypotheses about the physical properties of the translocon.

【 授权许可】

   
2014 Tessier et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150117020940769.pdf 221KB PDF download
【 参考文献 】
  • [1]Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8(10):785-786.
  • [2]Shen HB, Chou KC: Signal-3L: A 3-layer approach for predicting signal peptides. Biochem Biophys Res Commun 2007, 363(2):297-303.
  • [3]Chou KC, Shen HB: Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Commun 2007, 357(3):633-640.
  • [4]Hiller K, Grote A, Scheer M, Münch R, Jahn D: PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res 2004, 32(Web Server issue):W375-W379.
  • [5]Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001, 305(3):567-580.
  • [6]Kall L, Krogh A, Sonnhammer EL: Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Res 2007, 35(Web Server issue):W429-W432.
  • [7]Shen H, Chou JJ: MemBrain: improving the accuracy of predicting transmembrane helices. PLoS One 2008, 3(6):e2399.
  • [8]Elofsson A, von Heijne G: Membrane protein structure: prediction versus reality. Annu Rev Biochem 2007, 76:125-140.
  • [9]Tusnady GE, Simon I: Topology prediction of helical transmembrane proteins: how far have we reached? Curr Protein Pept Sci 2010, 11(7):550-561.
  • [10]Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S: Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 2002, 18(2):298-305.
  • [11]Yu D, Shen H, Yang J: SOMRuler: a novel interpretable transmembrane helices predictor. IEEE Trans Nanobiosci 2011, 10(2):121-129.
  • [12]Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G: Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 2005, 433(7024):377-381.
  • [13]Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, Lerch-Bader M, Nilsson I, White SH, von Heijne G: Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 2007, 450(7172):1026-1030.
  • [14]Bernsel A, Viklund H, Falk J, Lindahl E, von Heijne G, Elofsson A: Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci U S A 2008, 105(20):7177-7181.
  • [15]Viklund H, Elofsson A: OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 2008, 24(15):1662-1668.
  • [16]Reynolds SM, Kall L, Riffle ME, Bilmes JA, Noble WS: Transmembrane topology and signal peptide prediction using dynamic bayesian networks. PLoS Comput Biol 2008, 4(11):e1000213.
  • [17]London E, Shahidullah K: Transmembrane vs. non-transmembrane hydrophobic helix topography in model and natural membranes. Curr Opin Struct Biol 2009, 19(4):464-472.
  • [18]Shao S, Hegde RS: Membrane protein insertion at the endoplasmic reticulum. Annu Rev Cell Dev Biol 2011, 27:25-56.
  • [19]Laroum S, Tessier D, Duval B, Hao JK: A local search appproach for transmembrane segment and signal peptide discrimination. Lect Notes Comput Sci 2010, 6023:134-145.
  • [20]Laroum S, Duval B, Tessier D, Hao JK: Multi-neighborhood search for discrimination of signal peptides and transmembrane segments. Lect Notes Comput Sci 2011, 6623:111-122.
  • [21]Gumbart J, Chipot C, Schulten K: Free-energy cost for translocon-assisted insertion of membrane proteins. Proc Natl Acad Sci U S A 2011, 108(9):3596-3601.
  • [22]Fawcett T: ROC Graphs: Notes and Practical Considerations for Data Mining Researchers. In Technical Report HPL-2003-4. Palo Alto, CA: HP Labs; 2003.
  • [23]Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982, 157(1):105-132.
  • [24]Engelman DM, Steitz TA, Goldman A: Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem 1986, 15:321-353.
  • [25]Zhao G, London E: An amino acid “transmembrane tendency” scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationship to biological hydrophobicity. Protein Sci 2006, 15(8):1987-2001.
  • [26]Zhao G, London E: Strong correlation between statistical transmembrane tendency and experimental hydrophobicity scales for identification of transmembrane helices. J Membr Biol 2009, 229(3):165-168.
  • [27]Park Y, Helms V: Prediction of the translocon-mediated membrane insertion free energies of protein sequences. Bioinformatics 2008, 24(10):1271-1277.
  • [28]Berndt U, Oellerer S, Zhang Y, Johnson AE, Rospert S: A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc Natl Acad Sci U S A 2009, 106(5):1398-1403.
  • [29]Tsirigos KD, Hennerdal A, Kall L, Elofsson A: A guideline to proteome-wide alpha-helical membrane protein topology predictions. Proteomics 2012, 12(14):2282-2294.
  • [30]Kall L, Krogh A, Sonnhammer EL: A combined transmembrane topology and signal peptide prediction method. J Mol Biol 2004, 338(5):1027-1036.
  • [31]Kall L, Krogh A, Sonnhammer EL: An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 2005, 21(Suppl 1):i251-i257.
  • [32]Rath EM, Tessier D, Campbell AA, Lee HC, Werner T, Salam NK, Lee LK, Church WB: A benchmark server using high resolution protein structure data, and benchmark results for membrane helix predictions. BMC Bioinforma 2013, 14:111. BioMed Central Full Text
  • [33]Yang J, Jang R, Zhang Y, Shen HB: High-accuracy prediction of transmembrane inter-helix contacts and application to GPCR 3D structure modeling. Bioinformatics 2013, 29(20):2579-2587.
  • [34]von Heijne G: Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 1992, 225(2):487-494.
  • [35]Rose P, Beran B, Bi C, Bluhm W, Dimitropoulos D, Goodsell D, Prlic A, Quesada M, Quinn G, Westbrook J, Young J, Yukich B, Zardecki C, Berman H, Bourne P: The RCSB protein data bank: redesigned web site and web services. Nucleic Acids Res 2011, 39:D392-D401.
  • [36]Kozma D, Simon I, Tusnády GE: PDBTM: protein data bank of transmembrane proteins after 8 years. Nucleic Acids Res 2013, 41(Database issue):D524-D529.
  • [37]Melen K, Krogh A, von Heijne G: Reliability measures for membrane protein topology prediction algorithms. J Mol Biol 2003, 327(3):735-744.
  • [38]Jain E, Bairoch A, Duvaud S, Phan I, Redaschi N, Suzek BE, Martin MJ, McGarvey P, Gasteiger E: Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinforma 2009, 10:136. BioMed Central Full Text
  • [39]Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22(13):1658-1659.
  • [40]Tusnady GE, Dosztanyi Z, Simon I: PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res 2005, 33(Database issue):D275-D278.
  • [41]Hoos HH, Stützle T: Stochastic Local Search: Foundations and Applications: Morgan Kaufmann. Morgan Kaufmann; 2004.
  • [42]Sing T, Sander O, Beerenwinkel N, Lengauer T: ROCR: visualizing classifier performance in R. Bioinformatics 2005, 21(20):3940-3941.
  文献评价指标  
  下载次数:10次 浏览次数:8次