期刊论文详细信息
BMC Anesthesiology
The expenditure of computer-related worktime using clinical decision support systems in chronic pain therapy
Timm Hecht1  Anika C. Bundscherer1  Christoph L. Lassen1  Nicole Lindenberg1  Bernhard M. Graf1  Karl-Peter Ittner1  Christoph H. R. Wiese1 
[1] Department of Anesthesiology, University Medical Centre Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, D-93053, Germany
关键词: Polypharmacy;    Chronic pain;    Expenditure of time;    Adverse drug reaction;    Clinical decision support systems (CDSS);    Drug-drug interaction;   
Others  :  1222274
DOI  :  10.1186/s12871-015-0094-9
 received in 2014-12-16, accepted in 2015-07-16,  发布年份 2015
PDF
【 摘 要 】

Background

Estimate the expenditure of computer-related worktime resulting from the use of clinical decision support systems (CDSS) to prevent adverse drug reactions (ADR) among patients undergoing chronic pain therapy and compare the employed check systems with respect to performance and practicability.

Methods

Data were collected retrospectively from 113 medical records of patients under chronic pain therapy during 2012/2013. Patient-specific medications were checked for potential drug-drug interactions (DDI) using two publicly available CDSS, Apotheken Umschau (AU) and Medscape (MS), and a commercially available CDSS AiDKlinik® (AID). The time needed to analyze patient pharmacotherapy for DDIs was taken with a stopwatch. Measurements included the time needed for running the analysis and printing the results. CDSS were compared with respect to the expenditure of time and usability. Only patient pharmacotherapies with at least two prescribed drugs and fitting the criteria of the corresponding CDSS were analyzed. Additionally, a qualitative evaluation of the used check systems was performed, employing a questionnaire asking five pain physicians to compare and rate the performance and practicability of the three CDSSs.

Results

The AU tool took a total of 3:55:45 h with an average of 0:02:32 h for 93 analyzed patient regimens and led to the discovery of 261 DDIs. Using the Medscape interaction checker required a total of 1:28:35 h for 38 patients with an average of 0:01:58 h and a yield of 178 interactions. The CDSS AID required a total of 3:12:27 h for 97 patients with an average time of analysis of 0:01:59 h and the discovery of 170 DDIs. According to the pain physicians the CDSS AID was chosen as the preferred tool.

Conclusions

Applying a CDSS to examine a patients drug regimen for potential DDIs causes an average extra expenditure of work time of 2:09 min, which extends patient treatment time by 25 % on average. Nevertheless, the authors believe that the extra expenditure of time employing a CDSS is outweighed by their benefits, including reduced ADR risks and safer clinical drug management.

【 授权许可】

   
2015 Hecht et al.

【 预 览 】
附件列表
Files Size Format View
20150818001003944.html 95KB HTML download
【 参考文献 】
  • [1]Linjakumpu T, Hartikainen S, Klaukka T, Veijola J, Kivelä SL, Isoaho R. Use of medications and polypharmacy are increasing among the elderly. J Clin Epidemiol. 2002;55(8):809–17.
  • [2]Boyd CM, Darer J, Boult C, Fried LP, Boult L, Wu AW. Clinical practice guidelines and quality of care for older patients with multiple comorbid diseases: implications for pay for performance. JAMA. 2005;294(6):716–24. doi:10.1001/jama.294.6.716.
  • [3]Stewart RB, Cooper JW. Polypharmacy in the aged. Practical solutions. Drugs Aging. 1994; 4(6):449-461.
  • [4]Macedo AF, Alves C, Craveiro N, Marques FB. Multiple drug exposure as a risk factor for the seriousness of adverse drug reactions. J Nurs Manag. 2011;19(3):395–9. doi:10.1111/j.1365-2834.2011.01216.x.
  • [5]Jose J, Rao PG. Pattern of adverse drug reactions notified by spontaneous reporting in an Indian tertiary care teaching hospital. Pharmacol Res. 2006; 54(3):226-233.
  • [6]Obreli-Neto PR, Nobili A, de Oliveira Baldoni A, Guidoni CM, de Lyra Júnior DP, Pilger D, et al. Adverse drug reactions caused by drug–drug interactions in elderly outpatients: a prospective cohort study. Eur J Clin Pharmacol. 2012;68(12):1667–76. doi:10.1007/s00228-012-1309-3.
  • [7]Du Souich P. In human therapy, is the drug-drug interaction or the adverse drug reaction the issue? Can J Clin Pharmacol. 2001; 8(3):153-161.
  • [8]Bucşa C, Farcaş A, Cazacu I, Leucuta D, Achimas-Cadariu A, Mogosan C, et al. How many potential drug-drug interactions cause adverse drug reactions in hospitalized patients? Eur. J Intern Med. 2013;24(1):27–33. doi:10.1016/j.ejim.2012.09.011.
  • [9]Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ. 2004;329(7456):15–9. doi:10.1136/bmj.329.7456.15.
  • [10]Ko Y, Malone DC, Skrepnek GH, Armstrong EP, Murphy JE, Abarca J, et al. Prescribers’ knowledge of and sources of information for potential drug-drug interactions: a postal survey of US prescribers. Drug Saf. 2008;31(6):525–36.
  • [11]Bates DW, Boyle DL, Vander Vliet MB, Schneider J, Leape L. Relationship between medication errors and adverse drug events. J Gen Intern Med. 1995;10(4):199–205.
  • [12]von Laue NC, Schwappach DL, Koeck CM. The epidemiology of preventable adverse drug events: a review of the literature. Wien Klin Wochenschr. 2003; 115(12):407-415.
  • [13]Kanjanarat P, Winterstein AG, Johns TE, Hatton RC, Gonzalez-Rothi R, Segal R. Nature of preventable adverse drug events in hospitals: a literature review. Am J Health Syst Pharm. 2003;60(17):1750–9.
  • [14]Lövborg H, Eriksson LR, Jönsson AK, Bradley T, Hägg S. A prospective analysis of the preventability of adverse drug reactions reported in Sweden. Eur J Clin Pharmacol. 2012;68(8):1183–9. doi:10.1007/s00228-012-1237-2.
  • [15]Nazer LH, Eljaber R, Rimawi D, Hawari FI. Adverse drug events resulting in admission to the intensive care unit in oncology patients: Incidence, characteristics and associated cost. J Oncol Pharm Pract. 2013;19(4):298–304. doi:10.1177/1078155212465995.
  • [16]Pinzón JF, Maldonado C, Díaz JA, Segura O. Costos directos e impacto sobre la morbimortalidad hospitalaria de eventos adversos prevenibles a medicamentos en una institución de tercer nivel de Bogotá (Direct costs and hospital morbimortality impact from preventable adverse drug events). Biomedica. 2011;31(3):307–15. doi:10.1590/S0120-41572011000300003.
  • [17]Bates DW, Spell N, Cullen DJ, Burdick E, Laird N, Petersen LA, et al. The costs of adverse drug events in hospitalized patients. Adverse Drug Events Prevention Study Group. JAMA. 1997;277(4):307–11.
  • [18]Hakkarainen KM, Hedna K, Petzold M, Hägg S. Percentage of patients with preventable adverse drug reactions and preventability of adverse drug reactions – a meta-analysis. PLoS ONE. 2012;7(3), e33236. doi:10.1371/journal.pone.0033236.
  • [19]van Doormaal JE, van den Bemt PM, Zaal RJ, Egberts AC, Lenderink BW, Kosterink JG, et al. The influence that electronic prescribing has on medication errors and preventable adverse drug events: an interrupted time-series study. J Am Med Inform Assoc. 2009;16(6):816–25. doi:10.1197/jamia.M3099.
  • [20]Fritz D, Ceschi A, Curkovic I, Huber M, Egbring M, Kullak-Ublick GA, et al. Comparative evaluation of three clinical decision support systems: prospective screening for medication errors in 100 medical inpatients. Eur J Clin Pharmacol. 2012;68(8):1209–19. doi:10.1007/s00228-012-1241-6.
  • [21]Wright A, Feblowitz J, Phansalkar S, Liu J, Wilcox A, Keohane CA, et al. Preventability of adverse drug events involving multiple drugs using publicly available clinical decision support tools. Am J Health Syst Pharm. 2012;69(3):221–7. doi:10.2146/ajhp110084.
  • [22]Kaushal R, Shojania KG, Bates DW. Effects of computerized physician order entry and clinical decision support systems on medication safety: a systematic review. Arch Intern Med. 2003; 163(12):1409-1416.
  • [23]Classen DC, Pestotnik SL, Evans RS, Burke JP. Computerized surveillance of adverse drug events in hospital patients. JAMA. 1991;266(20):2847–51.
  • [24]Ing Lorenzini K, Reutemann B, Samer CF, Guignard B, Bonnabry P, Dayer P, et al. Quel programme informatique de détection des interactions médicamenteuses néfastes? (Comparison of four drug interaction screening programs). Rev Med Suisse. 2012;8(358):1978–82.
  • [25]Bates DW, Kuperman GJ, Wang S, Gandhi T, Kittler A, Volk L, et al. Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J Am Med Inform Assoc. 2003;10(6):523–30. doi:10.1197/jamia.M1370.
  • [26]Rabøl LI, Anhøj J, Pedersen A, Pedersen BL, Hellebek AH. Beslutningsstøtte til elektronisk patientmedicinering: reduceres forekomsten af medicineringsfejl? (Clinical decision support: Is the number of medication errors reduced?). Ugeskr Laeg. 2006;168(48):4179–84.
  • [27]Lyons A, Richardson S. Clinical decision support in critical care nursing. AACN Clin Issues. 2003;14(3):295–301.
  • [28]Kesselheim AS, Cresswell K, Phansalkar S, Bates DW, Sheikh A. Clinical decision support systems could be modified to reduce ‘Alert Fatigue’ while still minimizing the risk of litigation. Health Affairs. 2011;30(12):2310–7. doi:10.1377/hlthaff.2010.1111.
  • [29]Zorina OI, Haueis P, Greil W, Grohmann R, Kullak-Ublick GA, Russmann S. Comparative performance of two drug interaction screening programmes analysing a cross-sectional prescription dataset of 84,625 psychiatric inpatients. Drug Saf. 2013;36(4):247–58. doi:10.1007/s40264-013-0027-9.
  • [30]Grobe T, Dörming H, Schwartz F. Barmer GEK Arztreport. http://presse.barmer-gek.de/barmer/web/Portale/Presseportal/Subportal/Infothek/Studien-und-Reports/Arztreport/Arztreport-2010/PDF-Arztreport,property=Data.pdf. 2010.
  文献评价指标  
  下载次数:11次 浏览次数:19次