期刊论文详细信息
Biotechnology for Biofuels
A versatile toolkit for high throughput functional genomics with Trichoderma reesei
André Schuster2  Kenneth S Bruno1  James R Collett1  Scott E Baker1  Bernhard Seiboth2  Christian P Kubicek2  Monika Schmoll2 
[1] Chemical and Biological Process Development, Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, USA
[2] Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a/1665, A-1060 Wien, Austria
关键词: sexual crossing;    gene knock-out library;    vector construction;    transformation;    Hypocrea jecorina;    Trichoderma reesei;   
Others  :  798357
DOI  :  10.1186/1754-6834-5-1
 received in 2011-09-20, accepted in 2012-01-02,  发布年份 2012
PDF
【 摘 要 】

Background

The ascomycete fungus, Trichoderma reesei (anamorph of Hypocrea jecorina), represents a biotechnological workhorse and is currently one of the most proficient cellulase producers. While strain improvement was traditionally accomplished by random mutagenesis, a detailed understanding of cellulase regulation can only be gained using recombinant technologies.

Results

Aiming at high efficiency and high throughput methods, we present here a construction kit for gene knock out in T. reesei. We provide a primer database for gene deletion using the pyr4, amdS and hph selection markers. For high throughput generation of gene knock outs, we constructed vectors using yeast mediated recombination and then transformed a T. reesei strain deficient in non-homologous end joining (NHEJ) by spore electroporation. This NHEJ-defect was subsequently removed by crossing of mutants with a sexually competent strain derived from the parental strain, QM9414.

Conclusions

Using this strategy and the materials provided, high throughput gene deletion in T. reesei becomes feasible. Moreover, with the application of sexual development, the NHEJ-defect can be removed efficiently and without the need for additional selection markers. The same advantages apply for the construction of multiple mutants by crossing of strains with different gene deletions, which is now possible with considerably less hands-on time and minimal screening effort compared to a transformation approach. Consequently this toolkit can considerably boost research towards efficient exploitation of the resources of T. reesei for cellulase expression and hence second generation biofuel production.

【 授权许可】

   
2012 Schuster et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706121353133.pdf 5480KB PDF download
Figure 3. 103KB Image download
Figure 2. 83KB Image download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Rubin EM: Genomics of cellulosic biofuels. Nature 2008, 454:841-845.
  • [2]Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, et al.: Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 2011, 12:R40. BioMed Central Full Text
  • [3]Somerville C: Biofuels. Curr Biol 2007, 17.
  • [4]Kumar R, Singh S, Singh OV: Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 2008, 35:377-391.
  • [5]Schuster A, Schmoll M: Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 2010, 87:787-799.
  • [6]Buchert J, Oksanen T, Pere J, Siika-Aho M, Suurnäkki A, Viikari L: Applications of Trichoderma reesei enzymes in the pulp and paper industry. In Trichoderma and Gliocladium. Edited by Harman GE, Kubicek CP. London: Taylor and Francis; 1998:343-363.
  • [7]Galante Y, De Conti A, Monteverdi R: Application of Trichoderma enzymes in the textile industry. In Trichoderma and Gliocladium. Volume 2. Edited by Harman GE, Kubicek CP. London: Taylor and Francis; 1998::311-326.
  • [8]Galante Y, De Conti A, Monteverdi R: Application of Trichoderma enzymes in the food and feed industries. In Trichoderma and Gliocladium. Volume 2. Edited by Harman GE, Kubicek CP. London: Taylor and Francis; 1998::327-342.
  • [9]Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B: Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2009, 2:19. BioMed Central Full Text
  • [10]Schmoll M, Kubicek CP: Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus. A review. Acta Microbiol Immunol Hung 2003, 50:125-145.
  • [11]Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, et al.: Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 2008, 26:553-560.
  • [12]Penttila M, Nevalainen H, Ratto M, Salminen E, Knowles J: A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 1987, 61:155-164.
  • [13]Gruber F, Visser J, Kubicek CP, de Graaff LH: The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain. Curr Genet 1990, 18:71-76.
  • [14]Mach RL, Schindler M, Kubicek CP: Transformation of Trichoderma reesei based on hygromycin B resistance using homologous expression signals. Curr Genet 1994, 25:567-570.
  • [15]Kubodera T, Yamashita N, Nishimura A: Transformation of Aspergillus sp. and Trichoderma reesei using the pyrithiamine resistance gene (ptrA) of Aspergillus oryzae. Biosci Biotechnol Biochem 2002, 66:404-406.
  • [16]Schuster A, Kubicek CP, Friedl MA, Druzhinina IS, Schmoll M: Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process. BMC Genomics 2007, 8:449. BioMed Central Full Text
  • [17]Guangtao Z, Seiboth B, Wen C, Yaohua Z, Xian L, Wang T: A novel carbon source dependent genetic transformation system for the versatile cell factory Hypocrea jecorina (anamorph Trichoderma reesei). FEMS Microbiol Lett 2010, 303:26-32.
  • [18]Hartl L, Seiboth B: Sequential gene deletions in Hypocrea jecorina using a single blaster cassette. Curr Genet 2005, 48:204-211.
  • [19]Steiger MG, Vitikainen M, Uskonen P, Brunner K, Adam G, Pakula T, Penttila M, Saloheimo M, Mach RL, Mach-Aigner AR: Transformation System for Hypocrea jecorina (Trichoderma reesei) That Favors Homologous Integration and Employs Reusable Bidirectionally Selectable Markers. Applied and environmental microbiology 2011, 77:114.
  • [20]Guangtao Z, Hartl L, Schuster A, Polak S, Schmoll M, Wang T, Seidl V, Seiboth B: Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. J Biotechnol 2009, 139:146-151.
  • [21]Critchlow SE, Bowater RP, Jackson SP: Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol 1997, 7:588-598.
  • [22]Hoff B, Kamerewerd J, Sigl C, Zadra I, Kück U: Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain Pcku70 shows up-regulation of genes from the HOG pathway. Appl Microbiol Biotechnol 2010, 85:1081-1094.
  • [23]Snoek I, van der Krogt Z, Touw H, Kerkman R, Pronk J, Bovenberg R, van den Berg M, Daran J: Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet Biol 2009, 46:418-426.
  • [24]Kuhls K, Lieckfeldt E, Samuels GJ, Kovacs W, Meyer W, Petrini O, Gams W, Borner T, Kubicek CP: Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc Natl Acad Sci USA 1996, 93:7755-7760.
  • [25]Seidl V, Seibel C, Kubicek CP, Schmoll M: Sexual development in the industrial workhorse Trichoderma reesei. Proc Natl Acad Sci USA 2009, 106:13909-13914.
  • [26]Wilson RA, Talbot NJ: Fungal physiology-a future perspective. Microbiology 2009, 155:3810.
  • [27]Park G, Colot HV, Collopy PD, Krystofova S, Crew C, Ringelberg C, Litvinkova L, Altamirano L, Li L, Curilla S: High-Throughput Production of Gene Replacement Mutants in Neurospora crassa. Methods Mol Biol 2011, 722:179.
  • [28]Tian C, Beeson W, Iavarone A, Sun J, Marletta M, Cate J, Glass N: Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci USA 2009, 106:22157-22162.
  • [29]Videira A, Kasuga T, Tian C, Lemos C, Castro A, Glass NL: Transcriptional analysis of the response of Neurospora crassa to phytosphingosine reveals links to mitochondrial function. Microbiology 2009, 155:3134.
  • [30]Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC: A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA 2006, 103:10352-10357.
  • [31]Tian C, Li J, Glass NL: Exploring the bZIP transcription factor regulatory network in Neurospora crassa. Microbiology 2011, 157:747.
  • [32]Zeilinger S, Reithner B, Scala V, Peissl I, Lorito M, Mach RL: Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Applied and environmental microbiology 2005, 71:1591-1597.
  • [33]Freitag M, Williams RL, Kothe GO, Selker EU: A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proc Natl Acad Sci USA 2002, 99:8802.
  • [34]Kays AM, Rowley PS, Baasiri RA, Borkovich KA: Regulation of conidiation and adenylyl cyclase levels by the Galpha protein GNA-3 in Neurospora crassa. Mol Cell Biol 2000, 20:7693-7705.
  • [35]Vitikainen M, Arvas M, Pakula T, Oja M, Penttilä M, Saloheimo M: Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties. BMC Genomics 2010, 11:441. BioMed Central Full Text
  • [36]McCluskey K, Wiest AE, Grigoriev IV, Lipzen A, Martin J, Schackwitz W, Baker SE: Rediscovery by whole genome sequencing: classical mutations and genome polymorphisms in Neurospora crassa. G3: Genes, Genomes, Genetics 2011, 1:303-316.
  • [37]Bidard F, Benkhali JA, Coppin E, Imbeaud S, Grognet P, Delacroix H, Debuchy R: Genome-wide gene expression profiling of fertilization competent mycelium in opposite mating types in the heterothallic fungus Podospora anserina. PloS one 2011, 6:e21476.
  • [38]Galagan JE, Selker EU: RIP: the evolutionary cost of genome defense. Trends Genet 2004, 20:417-423.
  • [39]Le Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR, Martin J, Druzhinina IS, Mathis H, Monot F: Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci USA 2009, 106:16151.
  • [40]Seidl V, Gamauf C, Druzhinina IS, Seiboth B, Hartl L, Kubicek CP: The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C 30 lacks a 85 kb(29 gene-encoding) region of the wild-type genome. BMC Genomics 2008, 9:327. BioMed Central Full Text
  • [41]Diener SE, Chellappan MK, Mitchell TK, Dunn-Coleman N, Ward M, Dean RA: Insight into Trichoderma reesei's genome content, organization and evolution revealed through BAC library characterization. Fungal Genet Biol 2004, 41:1077-1087.
  • [42]Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS: Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 2003, 278:31988.
  • [43]Arvas M, Haiminen N, Smit B, Rautio J, Vitikainen M, Wiebe M, Martinez D, Chee C, Kunkel J: Detecting novel genes with sparse arrays. Gene 2010, 467(1-2):41-51.
  • [44]Portnoy T, Margeot A, Linke R, Atanasova L, Fekete E, Sandor E, Hartl L, Karaffa L, Druzhinina I, Seiboth B: The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 2011, 12:269. BioMed Central Full Text
  • [45]Wilson DB: Cellulases and biofuels. Curr Opin Biotechnol 2009, 20:295-299.
  • [46]Montenecourt B, Eveleigh D: Preparation of mutants of Trichoderma reesei with enhanced cellulase production. Applied and environmental microbiology 1977, 34:777-782.
  • [47]Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P: Multifunctional yeast high-copy-number shuttle vectors. Gene 1992, 110:119-122.
  • [48]Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000, 132:365-386.
  • [49]Collopy PD, Colot HV, Park G, Ringelberg C, Crew CM, Borkovich KA, Dunlap JC: High-throughput construction of gene deletion cassettes for generation of Neurospora crassa knockout strains. Methods Mol Biol 2010, 638:33.
  • [50]Gietz RD, Schiestl RH: High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2007, 2:31-34.
  • [51]Schuster A, Kubicek CP, Schmoll M: The dehydrogenase GRD1 represents a novel component of the cellulase regulon in Trichoderma reesei (Hypocrea jecorina). Applied and environmental microbiology 2011, AEM.00513-00511.
  文献评价指标  
  下载次数:35次 浏览次数:16次