Algorithms for Molecular Biology | |
Algorithmic approaches to protein-protein interaction site prediction | |
Tristan T Aumentado-Armstrong1  Bogdan Istrate1  Robert A Murgita2  | |
[1] School of Computer Science, McGill University, Montreal, Canada | |
[2] Department of Microbiology and Immunology, McGill University, Montreal, Canada | |
关键词: Homology; Biological databases; Machine learning; Interface types; Protein structure; Feature selection; Protein-protein binding; Protein-protein interface; Protein-protein interaction; Prediction algorithm; | |
Others : 1141275 DOI : 10.1186/s13015-015-0033-9 |
|
received in 2014-08-23, accepted in 2015-01-07, 发布年份 2015 | |
【 摘 要 】
Interaction sites on protein surfaces mediate virtually all biological activities, and their identification holds promise for disease treatment and drug design. Novel algorithmic approaches for the prediction of these sites have been produced at a rapid rate, and the field has seen significant advancement over the past decade. However, the most current methods have not yet been reviewed in a systematic and comprehensive fashion. Herein, we describe the intricacies of the biological theory, datasets, and features required for modern protein-protein interaction site (PPIS) prediction, and present an integrative analysis of the state-of-the-art algorithms and their performance. First, the major sources of data used by predictors are reviewed, including training sets, evaluation sets, and methods for their procurement. Then, the features employed and their importance in the biological characterization of PPISs are explored. This is followed by a discussion of the methodologies adopted in contemporary prediction programs, as well as their relative performance on the datasets most recently used for evaluation. In addition, the potential utility that PPIS identification holds for rational drug design, hotspot prediction, and computational molecular docking is described. Finally, an analysis of the most promising areas for future development of the field is presented.
【 授权许可】
2015 Aumentado-Armstrong et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150327015302671.pdf | 752KB | download |
【 参考文献 】
- [1]Krüger DM, Gohlke H: Drugscoreppi webserver: fast and accurate in silico alanine scanning for scoring protein–protein interactions. Nucleic Acids Res. 2010, 38(suppl 2):480-6.
- [2]Bradshaw RT, Patel BH, Tate EW, Leatherbarrow RJ, Gould IR: Comparing experimental and computational alanine scanning techniques for probing a prototypical protein–protein interaction. Protein Eng Des Sel. 2011, 24(1-2):197-207.
- [3]Aloy P, Russell RB: Ten thousand interactions for the molecular biologist. Nat Biotechnol. 2004, 22(10):1317-21.
- [4]Porollo A, Meller J: Computational methods for prediction of protein-protein interaction sites. Protein-Protein Interactions-Computational and Experimental Tools; W. Cai and H. Hong, Eds. InTech. 2012, 472:3-26.
- [5]Jones S, Thornton JM: Analysis of protein-protein interaction sites using surface patches. J Mol Biol. 1997, 272(1):121-32.
- [6]Jones S, Thornton JM: Prediction of protein-protein interaction sites using patch analysis. J Mol Biol. 1997, 272(1):133-43.
- [7]Chen C-T, Peng H-P, Jian J-W, Tsai K-C, Chang J-Y, Yang E-W, et al.: Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces. PloS one. 2012, 7(6):37706.
- [8]Šikić M, Tomić S, Vlahoviček K: Prediction of protein–protein interaction sites in sequences and 3d structures by random forests. PLoS Comput Biol. 2009, 5(1):1000278.
- [9]Fiorucci S, Zacharias M: Prediction of protein-protein interaction sites using electrostatic desolvation profiles. Biophys J. 2010, 98(9):1921-30.
- [10]Dosztányi Z, Mészáros B, Simon I: Anchor: web server for predicting protein binding regions in disordered proteins. Bioinformatics. 2009, 25(20):2745-6.
- [11]Martin J, Lavery R: Arbitrary protein- protein docking targets biologically relevant interfaces. BMC Biophys. 2012, 5(1):7.
- [12]La D, Kihara D: A novel method for protein–protein interaction site prediction using phylogenetic substitution models. Proteins: Struct Funct Bioinform. 2012, 80(1):126-41.
- [13]Bradford JR, Westhead DR: Improved prediction of protein–protein binding sites using a support vector machines approach. Bioinformatics. 2005, 21(8):1487-94.
- [14]Chen X-W, Jeong JC: Sequence-based prediction of protein interaction sites with an integrative method. Bioinformatics. 2009, 25(5):585-91.
- [15]Chung J-L, Wang W, Bourne PE: Exploiting sequence and structure homologs to identify protein–protein binding sites. Proteins: Struct Funct Bioinform. 2006, 62(3):630-40.
- [16]Chen H, Zhou H-X: Prediction of interface residues in protein–protein complexes by a consensus neural network method: test against nmr data. Proteins: Struct Funct Bioinform. 2005, 61(1):21-35.
- [17]de Vries SJ, Bonvin AM: Cport: a consensus interface predictor and its performance in prediction-driven docking with haddock. PLoS One. 2011, 6(3):17695.
- [18]Dong Q, Wang X, Lin L, Guan Y: Exploiting residue-level and profile-level interface propensities for usage in binding sites prediction of proteins. BMC Bioinform. 2007, 8(1):147.
- [19]Fernández-Recio J, Totrov M, Abagyan R: Identification of protein–protein interaction sites from docking energy landscapes. J Mol Biol. 2004, 335(3):843-65.
- [20]Xue LC, Dobbs D, Honavar V: Homppi: a class of sequence homology based protein-protein interface prediction methods. BMC Bioinform. 2011, 12(1):244.
- [21]Shoemaker BA, Zhang D, Thangudu RR, Tyagi M, Fong JH, Marchler-Bauer A, et al.: Inferred biomolecular interaction server—a web server to analyze and predict protein interacting partners and binding sites. Nucleic Acids Res. 2009, 38:842.
- [22]Ofran Y, Rost B: Isis: interaction sites identified from sequence. Bioinformatics. 2007, 23(2):13-6.
- [23]Engelen S, Trojan LA, Sacquin-Mora S, Lavery R, Carbone A: Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling. PLoS Comput Biol. 2009, 5(1):1000267.
- [24]Huang B, Schroeder M: Using protein binding site prediction to improve protein docking. Gene. 2008, 422(1):14-21.
- [25]Qin S, Zhou H-X: meta-ppisp: a meta web server for protein-protein interaction site prediction. Bioinformatics. 2007, 23(24):3386-7.
- [26]Tjong H, Qin S, Zhou H-X: Pi2pe: protein interface/interior prediction engine. Nucleic Acids Res. 2007, 35(suppl 2):357-62.
- [27]Kufareva I, Budagyan L, Raush E, Totrov M, Abagyan R: Pier: protein interface recognition for structural proteomics. Proteins: Struct Funct Bioinform. 2007, 67(2):400-17.
- [28]Liang S, Zhang C, Liu S, Zhou Y: Protein binding site prediction using an empirical scoring function. Nucleic Acids Res. 2006, 34(13):3698-707.
- [29]Li M-H, Lin L, Wang X-L, Liu T: Protein–protein interaction site prediction based on conditional random fields. Bioinformatics. 2007, 23(5):597-604.
- [30]Zhou H-X, Shan Y: Prediction of protein interaction sites from sequence profile and residue neighbor list. Proteins: Struct Funct Bioinform. 2001, 44(3):336-43.
- [31]Zhang QC, Petrey D, Norel R, Honig BH: Protein interface conservation across structure space. Proc Nat Acad Sci. 2010, 107(24):10896-901.
- [32]Zhang QC, Deng L, Fisher M, Guan J, Honig B, Petrey D. Predus: a web server for predicting protein interfaces using structural neighbors. Nucleic Acids Res. suppl 2; 39:283–7.
- [33]Zellner H, Staudigel M, Trenner T, Bittkowski M, Wolowski V, et al.: Prescont: Predicting protein-protein interfaces utilizing four residue properties. Proteins: Struct Funct Bioinform. 2012, 80(1):154-68.
- [34]Jordan RA, Yasser E-M, Dobbs D, Honavar V: Predicting protein-protein interface residues using local surface structural similarity. BMC Bioinformatics. 2012, 13(1):41.
- [35]Neuvirth H, Raz R, Schreiber G: Promate: a structure based prediction program to identify the location of protein–protein binding sites. J Mol Biol. 2004, 338(1):181-99.
- [36]Murakami Y, Mizuguchi K: Applying the naïve bayes classifier with kernel density estimation to the prediction of protein–protein interaction sites. Bioinformatics. 2010, 26(15):1841-8.
- [37]Bendell CJ, Liu S, Aumentado-Armstrong T, Istrate B, Cernek PT, Khan S, et al.: Transient protein-protein interface prediction: datasets, features, algorithms, and the rad-t predictor. BMC Bioinformatics. 2014, 15(1):82.
- [38]Li B-Q, Feng K-Y, Chen L, Huang T, Cai Y-D: Prediction of protein-protein interaction sites by random forest algorithm with mrmr and ifs. PloS one. 2012, 7(8):43927.
- [39]Porollo A, Meller J: Prediction-based fingerprints of protein–protein interactions. PROTEINS: Structure Function Bioinform. 2007, 66(3):630-45.
- [40]Segura J, Jones PF, Fernandez-Fuentes N: Improving the prediction of protein binding sites by combining heterogeneous data and voronoi diagrams. BMC Bioinformatics. 2011, 12(1):352.
- [41]de Vries SJ, van Dijk AD, Bonvin AM: Whiscy: What information does surface conservation yield? application to data-driven docking. Proteins: Struct Funct Bioinform. 2006, 63(3):479-89.
- [42]de Moraes FR, Neshich IA, Mazoni I, Yano IH, Pereira JG, Salim JA, et al.: Improving predictions of protein-protein interfaces by combining amino acid-specific classifiers based on structural and physicochemical descriptors with their weighted neighbor averages. PloS One. 2014, 9(1):87107.
- [43]Qiu Z, Wang X: Prediction of protein–protein interaction sites using patch-based residue characterization. J Theor Biol. 2012, 293:143-50.
- [44]Janin J. Basic principles of protein–protein interaction. Computational protein–protein interactions, 2009:1–20.
- [45]Alberts B, Johnson A, Raff M, Roberts K, Walter P. Molecular biology of the cell. 2008.
- [46]Keskin O, Gursoy A, Ma B, Nussinov R: Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev. 2008, 108(4):1225-44.
- [47]Computational Protein-protein Interactions. CRC Press, Boca Raton, FL, USA; 2010.
- [48]Nooren I, Thornton JM: Diversity of protein–protein interactions. EMBO J. 2003, 22(14):3486-92.
- [49]Ozbabacan SEA, Engin HB, Gursoy A, Keskin O: Transient protein–protein interactions. Protein Eng Des Sel. 2011, 24(9):635-48.
- [50]Amoutzias G, de Peer Y. Single-gene and whole-genome duplications and the evolution of protein-protein interaction networks. Evol Genomics Syst Biol. 2010:413–29.
- [51]Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C: Transient protein-protein interactions: structural, functional, and network properties. Structure. 2010, 18(10):1233-43.
- [52]La D, Kong M, Hoffman W, Choi YI, Kihara D: Predicting permanent and transient protein–protein interfaces. Proteins: Struct Funct Bioinform. 2013, 81(5):805-18.
- [53]Fernandez-Recio J, Totrov M, Skorodumov C, Abagyan R: Optimal docking area: a new method for predicting protein–protein interaction sites. PROTEINS: Struct Funct Bioinform. 2005, 58(1):134-43.
- [54]Liu R, Jiang W, Zhou Y: Identifying protein–protein interaction sites in transient complexes with temperature factor, sequence profile and accessible surface area. Amino Acids. 2010, 38(1):263-70.
- [55]Choi YS, Yang J-S, Choi Y, Ryu SH, Kim S: Evolutionary conservation in multiple faces of protein interaction. Proteins: Struct Funct Bioinform. 2009, 77(1):14-25.
- [56]Phizicky EM, Fields S: Protein-protein interactions: methods for detection and analysis. Microbiol Rev. 1995, 59(1):94-123.
- [57]Chichili V, Kumar V, Sivaraman J: A method to trap transient and weak interacting protein complexes for structural studies. Intrinsically Disordered. 2013, 1(1):1-8.
- [58]Tuncbag N, Gursoy A, Keskin O: Prediction of protein–protein interactions: unifying evolution and structure at protein interfaces. Phys Biol. 2011, 8(3):035006.
- [59]Sprinzak E, Altuvia Y, Margalit H: Characterization and prediction of protein–protein interactions within and between complexes. Proc Nat Acad Sci. 2006, 103(40):14718-23.
- [60]Mintseris J, Weng Z: Structure, function, and evolution of transient and obligate protein–protein interactions. Proc Nat Acad Sci USA. 2005, 102(31):10930-5.
- [61]Brown KR, Jurisica I: Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol. 2007, 8(5):95.
- [62]Mihalek I, Reš I, Lichtarge O: On itinerant water molecules and detectability of protein–protein interfaces through comparative analysis of homologues. J Mol Biol. 2007, 369(2):584-95.
- [63]Levy Y, Onuchic JN: Water mediation in protein folding and molecular recognition. Annu Rev Biophys Biomol Struct. 2006, 35:389-415.
- [64]Conte LL, Chothia C, Janin J: The atomic structure of protein-protein recognition sites. J Mol Biol. 1999, 285(5):2177-98.
- [65]Nooren I, Thornton JM: Structural characterisation and functional significance of transient protein–protein interactions. J Mol Biol. 2003, 325(5):991-1018.
- [66]Carl N, Konc J, Janezic D: Protein surface conservation in binding sites. J Chem Inform Model. 2008, 48(6):1279-86.
- [67]Zhu H, Domingues FS, Sommer I, Lengauer T: Noxclass: prediction of protein-protein interaction types. BMC Bioinformatics. 2006, 7(1):27.
- [68]Aziz M, Maleki M, Rueda L, Raza M, Banerjee S, et al.: Prediction of biological protein–protein interactions using atom-type and amino acid properties. Proteomics. 2011, 11(19):3802-10.
- [69]Maleki M, Vasudev G, Rueda L: The role of electrostatic energy in prediction of obligate protein-protein interactions. Proteome Sci. 2013, 11(Suppl 1):11.
- [70]Guharoy M, Chakrabarti P: Conservation and relative importance of residues across protein-protein interfaces. Proc Nat Acad Sci USA. 2005, 102(43):15447-52.
- [71]Larsen TA, Olson AJ, Goodsell DS: Morphology of protein–protein interfaces. Structure. 1998, 6(4):421-7.
- [72]Chakrabarti P, Janin J: Dissecting protein–protein recognition sites. Proteins: Struct Funct Bioinform. 2002, 47(3):334-43.
- [73]Karanicolas J, Corn JE, Chen I, Joachimiak LA, Dym O, Peck SH, et al.: A de novo protein binding pair by computational design and directed evolution. Molecular cell. 2011, 42(2):250-60.
- [74]Truong K, Ikura M: The use of fret imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo. Current Opin Struct Biol. 2001, 11(5):573-8.
- [75]Ezkurdia I, Bartoli L, Fariselli P, Casadio R, Valencia A, Tress ML: Progress and challenges in predicting protein–protein interaction sites. Brief Bioinformatics. 2009, 30(3):233-46.
- [76]Janin J, Bahadur RP, Chakrabarti P: Protein–protein interaction and quaternary structure. Q Rev Biophys. 2008, 41(02):133-80.
- [77]Hwang H, Pierce B, Mintseris J, Janin J, Weng Z: Protein–protein docking benchmark version 3.0. Proteins: Struct Funct Bioinform. 2008, 73(3):705-9.
- [78]Janin J, Wodak S: The third capri assessment meeting toronto, canada, april 20–21, 2007. Structure. 2007, 15(7):755-9.
- [79]Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, et al.: The protein data bank: a computer-based archival file for macromolecular structures. Arch Biochem Biophys. 1978, 185(2):584-91.
- [80]Ofran Y, Rost B: Analysing six types of protein–protein interfaces. J Mol Biol. 2003, 325(2):377-87.
- [81]Henrick K, Thornton JM: Pqs: a protein quaternary structure file server. Trends Biochem Sci. 1998, 23(9):358-61.
- [82]Krissinel E, Henrick K: Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007, 372(3):774-97.
- [83]Krissinel E: Crystal contacts as nature’s docking solutions. J Comput Chem. 2010, 31(1):133-43.
- [84]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215(3):403-10.
- [85]Wang G, Dunbrack RL: Pisces: a protein sequence culling server. Bioinformatics. 2003, 19(12):1589-91.
- [86]Wang G, Dunbrack RL: Pisces: recent improvements to a pdb sequence culling server. Nucleic Acids Res. 2005, 33(suppl 2):94-8.
- [87]Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006, 22(13):1658-9.
- [88]Huang Y, Niu B, Gao Y, Fu L, Li W: Cd-hit suite: a web server for clustering and comparing biological sequences. Bioinformatics. 2010, 26(5):680-2.
- [89]Murzin AG, Brenner SE, Hubbard T, Chothia C: Scop: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995, 247(4):536-40.
- [90]Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, Murzin AG: Scop database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res. 2004, 32(suppl 1):226-9.
- [91]Jordan R, Wu F, Dobbs D, Honavar V. Protindb: A database of protein-protein interface residues. Iowa State University (In Preparation)
- [92]Bickerton GR, Higueruelo AP, Blundell TL: Comprehensive, atomic-level characterization of structurally characterized protein-protein interactions: the piccolo database. BMC Bioinformatics. 2011, 12(1):313.
- [93]Smialowski P, Pagel P, Wong P, Brauner B, Dunger I, Fobo G, et al.: The negatome database: a reference set of non-interacting protein pairs. Nucleic Acids Res. 2010, 38(suppl 1):540-4.
- [94]Finn RD, Marshall M, Bateman A: ipfam: visualization of protein–protein interactions in pdb at domain and amino acid resolutions. Bioinformatics. 2005, 21(3):410-2.
- [95]Finn RD, Miller BL, Clements J, Bateman A: ipfam: a database of protein family and domain interactions found in the protein data bank. Nucleic Acids Res. 2014, 42(D1):364-73.
- [96]Stein A, Russell RB, Aloy P: 3did: interacting protein domains of known three-dimensional structure. Nucleic Acids Res. 2005, 33(suppl 1):413-7.
- [97]Consortium U: Update on activities at the universal protein resource (uniprot) in 2013. Nucleic Acids Res. 2013, 41(D1):43-7.
- [98]Martin AC: Mapping pdb chains to uniprotkb entries. Bioinformatics. 2005, 21(23):4297-301.
- [99]Schneider M, Fu X, Keating AE: X-ray vs. nmr structures as templates for computational protein design. Proteins: Struct Funct Bioinform. 2009, 77(1):97-110.
- [100]Fan H, Mark AE: Relative stability of protein structures determined by x-ray crystallography or nmr spectroscopy: A molecular dynamics simulation study. PROTEINS: Struct Funct Bioinform. 2003, 53(1):111-20.
- [101]Lee MR, Kollman PA: Free-energy calculations highlight differences in accuracy between x-ray and nmr structures and add value to protein structure prediction. Structure. 2001, 9(10):905-16.
- [102]Jones S, Thornton JM: Principles of protein-protein interactions. Proc Nat Acad Sci. 1996, 93(1):13-20.
- [103]Martin J: Benchmarking protein–protein interface predictions: Why you should care about protein size. Proteins: Struct Funct Bioinform. 2014, 82(7):1444-52.
- [104]Tuncbag N, Kar G, Keskin O, Gursoy A, Nussinov R: A survey of available tools and web servers for analysis of protein–protein interactions and interfaces. Briefings Bioinform. 2009, 10(3):217-32.
- [105]Fernández-Recio J: Prediction of protein binding sites and hot spots. Wiley Interdiscip Rev Comput Mol Sci. 2011, 1(5):680-98.
- [106]Chen R, Mintseris J, Janin J, Weng Z: A protein–protein docking benchmark. Proteins: Struct Funct Bioinform. 2003, 52(1):88-91.
- [107]Mintseris J, Wiehe K, Pierce B, Anderson R, Chen R, Janin J, et al.: Protein–protein docking benchmark 2.0: an update. Proteins: Struct Funct Bioinform. 2005, 60(2):214-6.
- [108]Hwang H, Vreven T, Janin J, Weng Z: Protein–protein docking benchmark version 4.0. Proteins: Struct Funct Bioinform. 2010, 78(15):3111-4.
- [109]Zhou H-X, Qin S: Interaction-site prediction for protein complexes: a critical assessment. Bioinformatics. 2007, 23(17):2203-9.
- [110]Mintz S, Shulman-Peleg A, Wolfson HJ, Nussinov R: Generation and analysis of a protein–protein interface data set with similar chemical and spatial patterns of interactions. Proteins: Struct Funct Bioinform. 2005, 61(1):6-20.
- [111]Lensink MF, Wodak SJ: Blind predictions of protein interfaces by docking calculations in capri. Proteins: Struct Funct Bioinform. 2010, 78(15):3085-95.
- [112]Stein A, Céol A, Aloy P: 3did: identification and classification of domain-based interactions of known three-dimensional structure. Nucleic Acids Res. 2011, 39(suppl 1):718-23.
- [113]Mészáros B, Simon I, Dosztányi Z: Prediction of protein binding regions in disordered proteins. PLoS Comput Biol. 2009, 5(5):1000376.
- [114]Kawashima S, Kanehisa M: Aaindex: amino acid index database. Nucleic Acids Res. 2000, 28(1):374.
- [115]Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M: Aaindex: amino acid index database, progress report 2008. Nucleic Acids Res. 2008, 36(suppl 1):202-5.
- [116]Neshich G, Mazoni I, Oliveira S, Yamagishi M, Kuser-Falcão P, Borro L, et al.: The star sting server: a multiplatform environment for protein structure analysis. Genet Mol Res GMR. 2005, 5(4):717-22.
- [117]Mihel J, Šikić M, Tomić S, Jeren B, Vlahoviček K: Psaia–protein structure and interaction analyzer. BMC Struct Biol. 2008, 8(1):21.
- [118]Tsodikov OV, Record MT, Sergeev YV: Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J Comput Chem. 2002, 23(6):600-9.
- [119]Kabsch W, Sander C: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983, 22(12):2577-637.
- [120]Hubbard SJ, Thornton JM. Naccess. Computer Program, Department of Biochemistry and Molecular Biology, University College London. 1993;2(1).
- [121]Hildebrandt A, Dehof AK, Rurainski A, Bertsch A, Schumann M, Toussaint NC, et al.: Ball-biochemical algorithms library 1.3. BMC Bioinformatics. 2010, 11(1):531.
- [122]Cheng J, Randall AZ, Sweredoski MJ, Baldi P: Scratch: a protein structure and structural feature prediction server. Nucleic Acids Res. 2005, 33(suppl 2):72-6.
- [123]Sanner MF, Olson AJ, Spehner J-C: Reduced surface: an efficient way to compute molecular surfaces. Biopolymers. 1996, 38(3):305-20.
- [124]Hoskins J, Lovell S, Blundell TL: An algorithm for predicting protein–protein interaction sites: abnormally exposed amino acid residues and secondary structure elements. Protein Sci. 2006, 15(5):1017-29.
- [125]Sander C, Schneider R: Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins: Struct Funct Bioinform. 1991, 9(1):56-68.
- [126]Dodge C, Schneider R, Sander C: The hssp database of protein structure—sequence alignments and family profiles. Nucleic Acids Res. 1998, 26(1):313-5.
- [127]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al.: Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25(17):3389-402.
- [128]Valdar WS: Scoring residue conservation. Proteins: Struct Funct Bioinform. 2002, 48(2):227-41.
- [129]Pupko T, Bell RE, Mayrose I, Glaser F, Ben-Tal N: Rate4site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues. Bioinformatics. 2002, 18(suppl 1):71-7.
- [130]Pei J, Grishin NV: Al2co: calculation of positional conservation in a protein sequence alignment. Bioinformatics. 2001, 17(8):700-12.
- [131]Pintar A, Carugo O, Pongor S: Dpx: for the analysis of the protein core. Bioinformatics. 2003, 19(2):313-4.
- [132]Pintar A, Carugo O, Pongor S: Cx, an algorithm that identifies protruding atoms in proteins. Bioinformatics. 2002, 18(7):980-4.
- [133]Lijnzaad P, Berendsen HJ, Argos P: A method for detecting hydrophobic patches on protein surfaces. Proteins: Struct Funct Bioinform. 1996, 26(2):192-203.
- [134]Fauchere J, Pliska V: Hydrophobic parameters-pi of amino-acid side-chains from the partitioning of n-acetyl-amino-acid amides. Eur J Med Chem. 1983, 18(4):369-75.
- [135]Crowley PB, Golovin A: Cation– π interactions in protein–protein interfaces. Proteins: Struct Funct Bioinform. 2005, 59(2):231-9.
- [136]Sillerud LO, Larson RS: Design and structure of peptide and peptidomimetic antagonists of protein-protein interaction. Current Protein Peptide Sci. 2005, 6(2):151-69.
- [137]Levy ED: A simple definition of structural regions in proteins and its use in analyzing interface evolution. J Mol Biol. 2010, 403(4):660-70.
- [138]Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z: Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics. 2006, 7(1):208.
- [139]Yang ZR, Thomson R, McNeil P, Esnouf RM: Ronn: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics. 2005, 21(16):3369-76.
- [140]Wright PE, Dyson HJ: Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol. 1999, 293(2):321-31.
- [141]Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z: Intrinsic disorder and protein function. Biochemistry. 2002, 41(21):6573-82.
- [142]Liu J, Tan H, Rost B: Loopy proteins appear conserved in evolution. J Mol Biol. 2002, 322(1):53-64.
- [143]Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK: Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol. 2002, 323(3):573-84.
- [144]Coleman RG, Burr MA, Souvaine DL, Cheng AC: An intuitive approach to measuring protein surface curvature. Proteins: Struct Funct Bioinform. 2005, 61(4):1068-74.
- [145]Yuan Z, Zhao J, Wang Z-X: Flexibility analysis of enzyme active sites by crystallographic temperature factors. Protein Eng. 2003, 16(2):109-14.
- [146]Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA: Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Nat Acad Sci. 2001, 98(18):10037-41.
- [147]Rocchia W, Alexov E, Honig B: Extending the applicability of the nonlinear poisson-boltzmann equation: Multiple dielectric constants and multivalent ions. J Phys Chem B. 2001, 105(28):6507-14.
- [148]Guerois R, Nielsen JE, Serrano L: Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol. 2002, 320(2):369-87.
- [149]Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L: The foldx web server: an online force field. Nucleic Acids Res. 2005, 33(suppl 2):382-8.
- [150]Cole C, Warwicker J: Side-chain conformational entropy at protein–protein interfaces. Protein Sci. 2002, 11(12):2860-70.
- [151]Yu C-M, Peng H-P, Chen C, Lee Y-C, Chen J-B, Tsai K-C, et al.: Rationalization and design of the complementarity determining region sequences in an antibody-antigen recognition interface. PloS One. 2012, 7(3):33340.
- [152]Laskowski RA, Thornton JM, Humblet C, Singh J: X-site: use of empirically derived atomic packing preferences to identify favourable interaction regions in the binding sites of proteins. J Mol Biol. 1996, 259(1):175-201.
- [153]Zuckerkandl E, Pauling L: Evolutionary divergence and convergence in proteins. Evolving Genes Proteins. 1965, 97:97-166.
- [154]Harms MJ, Thornton JW: Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet. 2013, 14(8):559-71.
- [155]de Juan D, Pazos F, Valencia A: Emerging methods in protein co-evolution. Nat Rev Genet. 2013, 14(4):249-61.
- [156]Grishin NV, Phillips MA: The subunit interfaces of oligomeric enzymes are conserved to a similar extent to the overall protein sequences. Protein Sci. 1994, 3(12):2455-8.
- [157]Caffrey DR, Somaroo S, Hughes JD, Mintseris J, Huang ES: Are protein–protein interfaces more conserved in sequence than the rest of the protein surface? Protein Sci. 2004, 13(1):190-202.
- [158]Bradford JR, Westhead DR: Asymmetric mutation rates at enzyme–inhibitor interfaces: implications for the protein–protein docking problem. Protein Sci. 2003, 12(9):2099-103.
- [159]Reddy BV, Kaznessis YN: A quantitative analysis of interfacial amino acid conservation in protein-protein hetero complexes. J Bioinform Comput Biol. 2005, 3(05):1137-50.
- [160]Ma B, Elkayam T, Wolfson H, Nussinov R: Protein–protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc Nat Acad Sci. 2003, 100(10):5772-7.
- [161]Ofran Y, Rost B: Protein–protein interaction hotspots carved into sequences. PLoS Comput Biol. 2007, 3(7):119.
- [162]Shoemaker BA, Zhang D, Tyagi M, Thangudu RR, Fong JH, Marchler-Bauer A, et al.: Ibis (inferred biomolecular interaction server) reports, predicts and integrates multiple types of conserved interactions for proteins. Nucleic Acids Res. 2012, 40(D1):834-40.
- [163]Wang B, Chen P, Huang D-S, Li J-J, Lok T-M, Lyu MR: Predicting protein interaction sites from residue spatial sequence profile and evolution rate. FEBS Lett. 2006, 580(2):380-4.
- [164]Chelliah V, Chen L, Blundell TL, Lovell SC: Distinguishing structural and functional restraints in evolution in order to identify interaction sites. J Mol Biol. 2004, 342(5):1487-504.
- [165]Celniker G, Nimrod G, Ashkenazy H, Glaser F, Martz E, Mayrose I, et al.: Consurf: using evolutionary data to raise testable hypotheses about protein function. Israel J Chem. 2013, 53(3-4):199-206.
- [166]Wilkins A, Erdin S, Lua R, Lichtarge O: Evolutionary trace for prediction and redesign of protein functional sites. Comput Drug Discov Design. 2012, 819:29-42.
- [167]Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, et al.: Consurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics. 2003, 19(1):163-4.
- [168]Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA: Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3d structure. PLoS Comput Biol. 2009, 5(12):1000585.
- [169]Berezin C, Glaser F, Rosenberg J, Paz I, Pupko T, Fariselli P, et al.: Conseq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics. 2004, 20(8):1322-4.
- [170]Ponomarenko JV, Bourne PE: Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct Biol. 2007, 7(1):64.
- [171]Dayhoff M, Schwartz R, Orcutt B: A model of evolutionary change in proteins. Atlas Protein Seq Struct. 1978, 5:345-52.
- [172]Henikoff S, Henikoff JG: Amino acid substitution matrices from protein blocks. Proc Nat Acad Sci. 1992, 89(22):10915-9.
- [173]Shannon CE: A mathematical theory of communication. Bell Syst Tech J. 1948, 27(3):379-423.
- [174]Mayrose I, Graur D, Ben-Tal N, Pupko T: Comparison of site-specific rate-inference methods for protein sequences: empirical bayesian methods are superior. Mol Biol Evol. 2004, 21(9):1781-91.
- [175]Glaser F, Rosenberg Y, Kessel A, Pupko T, Ben-Tal N: The consurf-hssp database: the mapping of evolutionary conservation among homologs onto pdb structures. PROTEINS: Struct Funct Bioinform. 2005, 58(3):610-7.
- [176]Schneider R, Sander C: The hssp database of protein structure-sequence alignments. Nucleic Acids Res. 1996, 24(1):201-5.
- [177]Kanamori E, Murakami Y, Tsuchiya Y, Standley DM, Nakamura H, Kinoshita K: Docking of protein molecular surfaces with evolutionary trace analysis. Proteins: Struct Funct Bioinform. 2007, 69(4):832-8.
- [178]Lichtarge O, Bourne HR, Cohen FE: An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol. 1996, 257(2):342-58.
- [179]Lichtarge O, Sowa ME: Evolutionary predictions of binding surfaces and interactions. Current Opin Struct Biol. 2002, 12(1):21-7.
- [180]Mihalek I, Reš I, Lichtarge O: A family of evolution–entropy hybrid methods for ranking protein residues by importance. J Mol Biol. 2004, 336(5):1265-82.
- [181]Chothia C, Lesk AM: The relation between the divergence of sequence and structure in proteins. EMBO J. 1986, 5(4):823.
- [182]Lesk AM, Chothia C: How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J Mol Biol. 1980, 136(3):225-70.
- [183]Petrey D, Fischer M, Honig B: Structural relationships among proteins with different global topologies and their implications for function annotation strategies. Proc Nat Acad Sci. 2009, 106(41):17377-82.
- [184]Ingles-Prieto A, Ibarra-Molero B, Delgado-Delgado A, Perez-Jimenez R, Fernandez JM, Gaucher EA, et al.: Conservation of protein structure over four billion years. Structure. 2013, 21(9):1690-7.
- [185]Kundrotas PJ, Zhu Z, Janin J, Vakser IA: Templates are available to model nearly all complexes of structurally characterized proteins. Proc Nat Acad Sci. 2012, 109(24):9438-41.
- [186]Monji H, Koizumi S, Ozaki T, Ohkawa T: Interaction site prediction by structural similarity to neighboring clusters in protein-protein interaction networks. BMC Bioinformatics. 2011, 12(Suppl 1):39.
- [187]Goncearenco A, Shoemaker BA, Zhang D, Sarychev A, Panchenko AR: Coverage of protein domain families with structural protein-protein interactions: current progress and future trends. Progress Biophys Mol Biol. 2014, 116(2):187-93.
- [188]Khafizov K, Madrid-Aliste C, Almo SC, Fiser A: Trends in structural coverage of the protein universe and the impact of the protein structure initiative. Proc Nat Acad Sci. 2014, 111(10):3733-8.
- [189]Gao M, Skolnick J: Structural space of protein–protein interfaces is degenerate, close to complete, and highly connected. Proc Nat Acad Sci. 2010, 107(52):22517-22.
- [190]Tuncbag N, Gursoy A, Nussinov R, Keskin O: Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using prism. Nat Protoc. 2011, 6(9):1341-54.
- [191]Garma L, Mukherjee S, Mitra P, Zhang Y: How many protein-protein interactions types exist in nature? PloS One. 2012, 7(6):38913.
- [192]Xie L, Xie L, Bourne PE: Structure-based systems biology for analyzing off-target binding. Current Opin Struct Biol. 2011, 21(2):189-99.
- [193]Xie L, Bourne PE: Functional coverage of the human genome by existing structures, structural genomics targets, and homology models. PLoS Comput Biol. 2005, 1(3):31.
- [194]Kundrotas PJ, Vakser IA: Accuracy of protein-protein binding sites in high-throughput template-based modeling. PLoS Comput Biol. 2010, 6(4):1000727.
- [195]Koike A, Takagi T: Prediction of protein–protein interaction sites using support vector machines. Protein Eng Des Sel. 2004, 17(2):165-73.
- [196]Glaser F, Steinberg DM, Vakser IA, Ben-Tal N: Residue frequencies and pairing preferences at protein–protein interfaces. Proteins: Struct Funct Bioinform. 2001, 43(2):89-102.
- [197]Miller S: The structure of interfaces between subunits of dimeric and tetrameric proteins. Protein Eng. 1989, 3(2):77-83.
- [198]Bouvier B, Grünberg R, Nilges M, Cazals F: Shelling the voronoi interface of protein–protein complexes reveals patterns of residue conservation, dynamics, and composition. Proteins: Struct Funct Bioinformatics. 2009, 76(3):677-92.
- [199]Bordner AJ, Abagyan R: Statistical analysis and prediction of protein–protein interfaces. Proteins: Struct Funct Bioinform. 2005, 60(3):353-66.
- [200]Prasad Bahadur R, Chakrabarti P, Rodier F, Janin J: A dissection of specific and non-specific protein–protein interfaces. J Mol Biol. 2004, 336(4):943-55.
- [201]Bahadur RP, Chakrabarti P, Rodier F, Janin J: Dissecting subunit interfaces in homodimeric proteins. Proteins: Struct Funct Bioinform. 2003, 53(3):708-19.
- [202]Hu Z, Ma B, Wolfson H, Nussinov R: Conservation of polar residues as hot spots at protein interfaces. Proteins: Struct Funct Bioinform. 2000, 39(4):331-42.
- [203]Lukatsky D, Shakhnovich B, Mintseris J, Shakhnovich E: Structural similarity enhances interaction propensity of proteins. J Mol Biol. 2007, 365(5):1596-606.
- [204]Murakami Y, Jones S: Sharp2: protein–protein interaction predictions using patch analysis. Bioinformatics. 2006, 22(14):1794-5.
- [205]Negi SS, Schein CH, Oezguen N, Power TD, Braun W: Interprosurf: a web server for predicting interacting sites on protein surfaces. Bioinformatics. 2007, 23(24):3397-9.
- [206]Hamer R, Luo Q, Armitage JP, Reinert G, Deane CM: i-patch: Interprotein contact prediction using local network information. Proteins: Struct Funct Bioinform. 2010, 78(13):2781-97.
- [207]Warme PK, Morgan RS: A survey of atomic interactions in 21 proteins. J Mol Biol. 1978, 118(3):273-87.
- [208]Xu D, Lin SL, Nussinov R: Protein binding versus protein folding: the role of hydrophilic bridges in protein associations. J Mol Biol. 1997, 265(1):68-84.
- [209]Tsai C-J, Lin SL, Wolfson HJ, Nussinov R: Studies of protein-protein interfaces: A statistical analysis of the hydrophobic effect. Protein Sci. 1997, 6(1):53-64.
- [210]Liu S, Zhang C, Zhou H, Zhou Y: A physical reference state unifies the structure-derived potential of mean force for protein folding and binding. Proteins: Struct Funct Bioinform. 2004, 56(1):93-101.
- [211]Tsai C-J, Xu D, Nussinov R: Structural motifs at protein-protein interfaces: Protein cores versus two-state and three-state model complexes. Protein Sci. 1997, 6(9):1793-805.
- [212]McConkey BJ, Sobolev V, Edelman M: Discrimination of native protein structures using atom–atom contact scoring. Proc Nat Acad Sci. 2003, 100(6):3215-20.
- [213]Lawrence MC, Colman PM: Shape complementarity at protein/protein interfaces. J Mol Biol. 1993, 234(4):946-50.
- [214]de Vries SJ, Bonvin AM: How proteins get in touch: interface prediction in the study of biomolecular complexes. Current Protein Peptide Sci. 2008, 9(4):394-406.
- [215]Wass MN, David A, Sternberg MJ: Challenges for the prediction of macromolecular interactions. Current Opinion Struct Biol. 2011, 21(3):382-90.
- [216]Yu L, Liu H: Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res. 2004, 5:1205-24.
- [217]Booker LB, Goldberg DE, Holland JH: Classifier systems and genetic algorithms. Artif Intell. 1989, 40(1):235-82.
- [218]Andrew Moore MSL: Efficient algorithms for minimizing cross validation error. In Proceedings of the 11th International Confonference on Machine Learning. Edited by Cohen WW, Hirsh H. Morgan Kaufmann, Burlington, Massachusetts, USA; 1994.
- [219]Matthews BW: Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Struct. 1975, 405(2):442-51.
- [220]Maron O, Moore AW: Hoeffding races: Accelerating model selection search for classification and function approximation. Adv Neural Inform Process Syst. 1993, 6:59-66.
- [221]Hoeffding W: Probability inequalities for sums of bounded random variables. J Am Stat Assoc. 1963, 58(301):13-30.
- [222]Peng H, Long F, Ding C: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. Pattern Anal Mach Intell IEEE Trans. 2005, 27(8):1226-38.
- [223]Ding C, Peng H: Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol. 2005, 3(02):185-205.
- [224]Cover TM, Thomas JA: Entropy, relative entropy and mutual information. In Elements Inform Theory. John Wiley & Sons, Inc., Hoboken, NJ; 1991.
- [225]Li B-Q, Hu L-L, Niu S, Cai Y-D, Chou K-C: Predict and analyze s-nitrosylation modification sites with the mrmr and ifs approaches. J Proteomics. 2012, 75(5):1654-65.
- [226]Li B-Q, Hu L-L, Chen L, Feng K-Y, Cai Y-D, Chou K-C: Prediction of protein domain with mrmr feature selection and analysis. PLoS One. 2012, 7(6):39308.
- [227]Hotelling H: Analysis of a complex of statistical variables into principal components. J Educ Psychol. 1933, 24(6):417.
- [228]Jolliffe I: Principal component analysis. In Encyclopedia of Statistics in Behavioral Science. Wiley Online Library, Chichester, England; 2005.
- [229]Jackson DA. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology. 1993:2204–14.
- [230]Jones S, Thornton JM: Protein-protein interactions: a review of protein dimer structures. Prog Biophys Mol Biol. 1995, 63(1):31-65.
- [231]De Vries SJ, Bonvin AM: Intramolecular surface contacts contain information about protein–protein interface regions. Bioinformatics. 2006, 22(17):2094-8.
- [232]Petrey D, Honig B: Grasp2: visualization, surface properties, and electrostatics of macromolecular structures and sequences. Methods Enzymol. 2002, 374:492-509.
- [233]Yang A-S, Honig B: An integrated approach to the analysis and modeling of protein sequences and structures. i. protein structural alignment and a quantitative measure for protein structural distance. J Mol Biol. 2000, 301(3):665-78.
- [234]Cortes C, Vapnik V: Support-vector networks. Mach Learn. 1995, 20(3):273-97.
- [235]Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci CABIOS. 1992, 8(3):275-82.
- [236]Gascuel O: Bionj: an improved version of the nj algorithm based on a simple model of sequence data. Mol Biol Evol. 1997, 14(7):685-95.
- [237]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987, 4(4):406-25.
- [238]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52(5):696-704.
- [239]Breiman L: Random forests. Mach Learn. 2001, 45(1):5-32.
- [240]Loriot S, Cazals F: Modeling macro–molecular interfaces with intervor. Bioinformatics. 2010, 26(7):964-5.
- [241]Freund Y, Mason L: The alternating decision tree learning algorithm. [http://dl.acm.org/citation.cfm?id=645528.657623] webciteProceedings of the Sixteenth International Conference on Machine Learning. ICML ’99 Morgan Kaufmann Publishers Inc., San Francisco, CA, USA; 1999. http://dl.acm.org/citation.cfm?id=645528.657623
- [242]Pfahringer B, Holmes G, Kirkby R. Optimizing the induction of alternating decision trees. Adv Knowl Discov Data Mining. 2001:477–87.
- [243]Aurenhammer F: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput Surv (CSUR). 1991, 23(3):345-05.
- [244]da Silveira CH, Pires DE, Minardi RC, Ribeiro C, Veloso CJ, et al.: Protein cutoff scanning: A comparative analysis of cutoff dependent and cutoff free methods for prospecting contacts in proteins. Proteins: Struct Funct Bioinform. 2009, 74(3):727-43.
- [245]Fisher RA: The use of multiple measurements in taxonomic problems. Ann Eugen. 1936, 7(2):179-88.
- [246]Venables WN, Ripley BD: Modern applied statistics with s. Springer, New York, NY, USA; 2002.
- [247]Rumelhart DE, Hinton GE, Williams RJ: Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1. MIT Press, Cambridge, MA, USA; 1986.
- [248]Haykin S, 1st edn. Upper Saddle River, NJ, USA: Prentice Hall PTR; 1994.
- [249]Riedmiller M, Braun H: A direct adaptive method for faster backpropagation learning: The rprop algorithm. In Neural Networks, 1993., IEEE International Conference On. IEEE, Washington, DC, USA; 1993.
- [250]Breiman L: Bagging predictors. Mach Learn. 1996, 24(2):123-40.
- [251]Fawcett T: An introduction to roc analysis. Pattern Recognit Lett. 2006, 27(8):861-74.
- [252]Bradley AP: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30(7):1145-59.
- [253]Sørensen T: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on danish commons. Biol Skr. 1948, 5:1-34.
- [254]Dice LR: Measures of the amount of ecologic association between species. Ecology. 1945, 26(3):297-302.
- [255]Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics. 2000, 16(5):412-24.
- [256]Peng K, Obradovic Z, Vucetic S. Exploring bias in the protein data bank using contrast classifiers. In: Pacific Symposium on Biocomputing 2004: Hawaii, USA, 6-10 January 2004. World Scientific: 2003. p. 435.
- [257]Kirchmair J, Markt P, Distinto S, Schuster D, Spitzer GM, Liedl KR, Langer T, Wolber G: The protein data bank (pdb), its related services and software tools as key components for in silico guided drug discovery. J Med Chem. 2008, 51(22):7021-40.
- [258]Bouman CA, Shapiro M: A multiscale random field model for bayesian image segmentation. Image Process IEEE Trans. 1994, 3(2):162-77.
- [259]He X, Zemel RS, Carreira-Perpindn M: Multiscale conditional random fields for image labeling. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference On, vol. 2. IEEE, Washington, DC, USA; 2004.
- [260]Li X, Moal IH, Bates PA: Detection and refinement of encounter complexes for protein–protein docking: taking account of macromolecular crowding. Proteins: Struct Funct Bioinform. 2010, 78(15):3189-96.
- [261]Mnih V, Szepesvári C, Audibert J-Y: Empirical bernstein stopping. In Proceedings of the 25th International Conference on Machine Learning. ACM, New York, NY, USA; 2008.
- [262]Schölkopf B, Smola A, Müller K-R: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10(5):1299-319.
- [263]Hinton GE, Salakhutdinov RR: Reducing the dimensionality of data with neural networks. Science. 2006, 313(5786):504-7.
- [264]Lise S, Archambeau C, Pontil M, Jones DT: Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods. BMC Bioinformatics. 2009, 10(1):365.
- [265]Xu B, Wei X, Deng L, Guan J, Zhou S: A semi-supervised boosting svm for predicting hot spots at protein-protein interfaces. BMC Syst Biol. 2012, 6(Suppl 2):6.
- [266]Qi Y, Tastan O, Carbonell JG, Klein-Seetharaman J, Weston J: Semi-supervised multi-task learning for predicting interactions between hiv-1 and human proteins. Bioinformatics. 2010, 26(18):645-52.
- [267]Bruzzone L, Persello C: A novel context-sensitive semisupervised svm classifier robust to mislabeled training samples. Geosci Remote Sensing IEEE Trans. 2009, 47(7):2142-54.
- [268]Frénay B, Verleysen M: Classification in the presence of label noise: a survey. IEEE Trans Neural Netw Learn Syst. 2014, 25(5):845-69.
- [269]Tan A, Gilbert D, Deville Y: Multi-class protein fold classification using a new ensemble machine learning approach. Genome Inform. 2003, 14:206-17.
- [270]Weston J, Watkins C. Support vector machines for multi-class pattern recognition, vol. 99. In: ESANN: 1999. p. 219–24.
- [271]Moreira IS, Fernandes PA, Ramos MJ: Hot spots—a review of the protein–protein interface determinant amino-acid residues. Proteins: Struct Funct Bioinform. 2007, 68(4):803-12.
- [272]Geppert T, Reisen F, Pillong M, Hähnke V, Tanrikulu Y, Koch CP, et al.: Virtual screening for compounds that mimic protein–protein interface epitopes. J Comput Chem. 2012, 33(5):573-9.
- [273]Bogan AA, Thorn KS: Anatomy of hot spots in protein interfaces. J Mol Biol. 1998, 280(1):1-9.
- [274]Livnah O, Stura EA, Johnson DL, Middleton SA, Mulcahy LS, Wrighton NC, et al.: Functional mimicry of a protein hormone by a peptide agonist: the epo receptor complex at 2.8 å. Science. 1996, 273(5274):464-71.
- [275]Johnson DL, Farrell FX, Barbone FP, McMahon FJ, Tullai J, Hoey K, et al.: Identification of a 13 amino acid peptide mimetic of erythropoietin and description of amino acids critical for the mimetic activity of emp1. Biochemistry. 1998, 37(11):3699-710.
- [276]Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, et al.: Computational design of ligand-binding proteins with high affinity and selectivity. Nature. 2013, 501(7466):212-6.
- [277]Schreiber G, Fleishman SJ: Computational design of protein–protein interactions. Current Opin Struct Biol. 2013, 23(6):903-10.
- [278]De Vries SJ, van Dijk M, Bonvin AM: The haddock web server for data-driven biomolecular docking. Nat Protocols. 2010, 5(5):883-97.
- [279]Dominguez C, Boelens R, Bonvin AM: Haddock: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soci. 2003, 125(7):1731-7.
- [280]Lopes A, Sacquin-Mora S, Dimitrova V, Laine E, Ponty Y, Carbone A: Protein-protein interactions in a crowded environment: an analysis via cross-docking simulations and evolutionary information. PLoS Comput Biol. 2013, 9(12):1003369.
- [281]Kuzu G, Keskin O, Gursoy A, Nussinov R: Constructing structural networks of signaling pathways on the proteome scale. Current Opinion Struct Biol. 2012, 22(3):367-377.
- [282]Bandyopadhyay S, Sharan R, Ideker T: Systematic identification of functional orthologs based on protein network comparison. Genome Research. 2006, 16(3):428-435.
- [283]Phan HT, Sternberg MJ: Pinalog: a novel approach to align protein interaction networks—implications for complex detection and function prediction. Bioinformatics. 2012, 28(9):1239-45.
- [284]Singh R, Xu J, Berger B: Global alignment of multiple protein interaction networks with application to functional orthology detection. Proc Nat Acad Sci. 2008, 105(35):12763-8.