期刊论文详细信息
BioMedical Engineering OnLine
In vivo assessment of the host reactions to the biodegradation of the two novel magnesium alloys ZEK100 and AX30 in an animal model
Andrea Meyer-Lindenberg1  Henning Windhagen2  Dirk Bormann5  Jan Marten Seitz5  Dina Dziuba4  Brigitte von Rechenberg3  Janin Reifenrath4  Tim Andreas Huehnerschulte4 
[1]Faculty of Veterinary Medicine, Ludwig-Maximilians-Universitaet Muenchen, Veterinärstraße 13, 80539 Munich, Germany
[2]Medical School Hanover, Annastift, Anna-von-Borries-Straße 1-7 30625 Hanover-Kleefeld, Germany
[3]University of Zurich, Muscoskeletal Research Unit, Winterthurerstrasse 260, 8057 Zurich, Switzerland
[4]School of Veterinary Medicine Hanover, Small Animals Clinic, CRC 599, Bünteweg 9, 30559 Hanover, Germany
[5]Leibniz University of Hanover, Institute of Materials Science, An der Universität 2, 30823 Garbsen, Germany
关键词: Histology;    μ-computed tomography;    Degradation;    Biocompatibility;    In vivo;    Magnesium;   
Others  :  798113
DOI  :  10.1186/1475-925X-11-14
 received in 2012-01-25, accepted in 2012-03-20,  发布年份 2012
PDF
【 摘 要 】

Background

Most studies on biodegradable magnesium implants published recently use magnesium-calcium-alloys or magnesium-aluminum-rare earth-alloys.

However, since rare earths are a mixture of elements and their toxicity is unclear, a reduced content of rare earths is favorable. The present study assesses the in vivo biocompatibility of two new magnesium alloys which have a reduced content (ZEK100) or contain no rare earths at all (AX30).

Methods

24 rabbits were randomized into 4 groups (AX30 or ZEK100, 3 or 6 months, respectively) and cylindrical pins were inserted in their tibiae. To assess the biodegradation μCT scans and histological examinations were performed.

Results

The μCT scans showed that until month three ZEK100 degrades faster than AX30, but this difference is leveled out after 6 months. Histology revealed that both materials induce adverse host reactions and high numbers of osteoclasts in the recipient bone. The mineral apposition rates of both materials groups were high.

Conclusions

Both alloys display favorable degradation characteristics, but they induce adverse host reactions, namely an osteoclast-driven resorption of bone and a subsequent periosteal formation of new bone. Therefore, the biocompatibility of ZEK100 and AX30 is questionable and further studies, which should focus on the interactions on cellular level, are needed.

【 授权许可】

   
2012 Huehnerschulte et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706101454922.pdf 2747KB PDF download
Figure 6. 27KB Image download
Figure 5. 193KB Image download
Figure 4. 151KB Image download
Figure 3. 253KB Image download
Figure 2. 54KB Image download
Figure 1. 154KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005, 26:3557-3563.
  • [2]Peuster M, Beerbaum P, Bach F, Hauser H: Are resorbable implants about to become a reality? Cardiol Young 2006, 16:107-116.
  • [3]Staiger MP, Pietak AM, Huadmai J, Dias G: Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 2006, 27:1728-1734.
  • [4]Williams D: New interests in magnesium. Med Device Technol 2006, 17:9-10.
  • [5]Song G: Control of biodegradation of biocompatable magnesium alloys. Corros Sci 2007, 49:1696-1701.
  • [6]Gu X, Zheng Y, Cheng Y, Zhong S, Xi T: In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009, 30:484-498.
  • [7]von der Höh N, Bormann D, Lucas A, Denkena B, Hackenbroich C, Meyer-Lindenberg A: Influence of different surface machining treatments of magnesium-based resorbable implants on the degradation behavior in rabbits. Adv Eng Mater 2009, 11:B47-B54.
  • [8]Krause A, von der Höh N, Bormann D, Krause C, Bach F, Windhagen H, Meyer-Lindenberg A: Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae. J Mater Sci 2010, 45:624-632.
  • [9]Thomann M, Krause C, Bormann D, von der Höh N, Windhagen H, Meyer-Lindenberg A: Comparison of the resorbable magnesium alloys LAE442 und MgCa0.8 concerning their mechanical properties, their progress of degradation and the bone-implant-contact after 12 months implantation duration in a rabbit model. Mat Sci Eng Tech 2009, 40:82-87.
  • [10]Witte F, Fischer J, Nellesen J, Vogt C, Vogt J, Donath T, Beckmann F: In vivo corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomater 2010, 6:1792-1799.
  • [11]Lambotte A: L'utilisation du magnesium comme materiel perdu dans l'osteosynthèse. Bull Mém Soc Nat Chir 1932, 28:1325-1334.
  • [12]Verbrugge J: Le matériel métallique résorbable en chirurgie osseuse. La Press Med 1934, 23:460-465.
  • [13]McBride ED: Absorbable metal in bone surgery. J Am Med Assoc 1938, 111:2464-2467.
  • [14]Troitskii VV, Tsitrin DN: The resorbing metallic alloy "Osteosintezit" as material for fastening broken bones. Khirurgiya 1944, 8:41-44.
  • [15]Nicole R: Metallschädigung bei Osteosynthesen. Helv Chir Acta 1947, 3(14 Suppl):42-47.
  • [16]Hort N, Huang Y, Fechner D, Störmer M, Blawert C, Witte F, Vogt C, Drücker H, Willumeit R, Kainer KU, Feyerabend F: Magnesium alloys as implant materials - Principles of property design for Mg-RE alloys. Acta Biomater 2009, 6:1714-1725.
  • [17]Zberg B, Uggowitzer PJ, Löffler JF: MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater 2009, 8:887-891.
  • [18]Li Z, Gu X, Lou S, Zheng Y: The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 2008, 29:1329-1344.
  • [19]Kannan MB, Raman RK: In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials 2008, 29:2306-2314.
  • [20]Salahshoor M, Guo YB: Surface integrity of biodegradable Magnesium-Calcium orthopedic implant by burnishing. J Mech Behav Biomed Mater 2011, 4:1888-1904.
  • [21]Drynda A, Hassel T, Hoehn R, Perz A, Bach F, Peuster M: Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications. J Biomed Mater Res A 2010, 93:763-775.
  • [22]Erne P, Schier M, Resink TJ: The road to bioabsorbable stents: reaching clinical reality? Cardiovasc Intervent Radiol 2006, 29:11-16.
  • [23]Witte F, Abeln I, Switzer E, Kaese V, Meyer-Lindenberg A, Windhagen H: Evaluation of the skin sensitizing potential of biodegradable magnesium alloys. J Biomed Mater Res A 2007, 86:1041-1047.
  • [24]Feser K, Kietzmann M, Baumer W, Krause C, Bach F: Effects of degradable Mg-Ca alloys on dendritic cell function. J Biomater Appl 2010, 25:685-697.
  • [25]Revell P, Damien E, Zhang X, Evans P, Howlett C: The effect of magnesium ions on bone bonding to hydroxyapatite. Key Eng Mater 2004, 254-256:447-450.
  • [26]Janning C, Willbold E, Vogt C, Nellesen J, Meyer-Lindenberg A, Windhagen H, Thorey F, Witte F: Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomater 2010, 6:1861-1868.
  • [27]Jha AM, Singh AC: Clastogenicity of lanthanides-induction of micronuclei in root tips of Vicia faba. Mutat Res 1994, 322:169-172.
  • [28]Hirano S, Suzuki KT: Exposure, metabolism, and toxicity of rare earths and related compounds. Environ Health Perspect 1996, 104:85-95.
  • [29]Feyerabend F, Fischer J, Holtz J, Witte F, Willumeit R, Drücker H, Vogt C, Hort N: Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater 2010, 6:1834-1842.
  • [30]Yuen CK, Ip WY: Theoretical risk assessment of magnesium alloys as degradable biomedical implants. Acta Biomater 2010, 6:1808-1812.
  • [31]Böstman O, Pihlajamäki H: Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials 2000, 21:2615-2621.
  • [32]Purnama A, Hermawan H, Couet J, Mantovani D: Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation. Acta Biomater 2010, 6:1800-1807.
  • [33]Feser K, Kietzmann M, Krause C, Bach F, Bäumer W: Effect of magnesium alloys on dendritic cell function. J Biomater Appl 2010, 25:685-697.
  • [34]Gorczyca JT, McKale J, Pugh K, Pienkowski D: Modified tibial nails for treating distal tibia fractures. J Orthop Trauma 2002, 16:18-22.
  • [35]Thomann M, von der Hoeh N, Bormann D, Rittershaus D, Krause C, Windhagen H, Meyer-Lindenberg A: Comparison of the cross sectional area, the loss in volume and the mechanical properties of LAE442 and MgCa0.8 as resorbable magnesium alloy implants after 12 months implantation duration. Mater Sci Forum 2010, 638-642:675-680.
  • [36]Donath K, Breuner G: A method for the study of undecalcified bones and teeth with attached soft tissues. J Oral Pathol 1982, 11:318-326.
  • [37]Mostafa YA, Meyer RA, Latorraca R: A simple and rapid method for osteoclast identification using a histochemical method for acid phosphatase. Histochem J 1982, 14:409-413.
  • [38]Willbold E, Witte F: Histology and research at the hard tissue-implant interface using Technovit 9100 New embedding technique. Acta Biomater 2010, 6:4447-4455.
  • [39]Frost HM, Villanueva AR, Roth H, Stanisavljevic S: Tetracycline bone labeling. J New Drugs 1961, 1:206-216.
  • [40]Harris WH: A microscopic method of determining rates of bone growth. Nature 1960, 188:1038-1039.
  • [41]Pautke C, Vogt S, Tischer T, Wexel G, Deppe H, Milz S, Schieker M, Kolk A: Polychrome labeling of bone with seven different fluorochromes: enhancing fluorochrome discrimination by spectral image analysis. Bone 2005, 37:441-445.
  • [42]Parfitt AM: Bone histomorphometry: standardization of nomenclature, symbols and units. Summary of proposed system. Bone Miner 1987, 2:595-610.
  • [43]Erdmann N, Bondarenko A, Hewicker-Trautwein M, Angrisani N, Reifenrath J, Lucas A, Meyer-Lindenberg A: Evaluation of the soft tissue biocompatibility of MgCa0.8 and surgical steel 316L in vivo: a comparative study in rabbits. Biomed Eng Online 2010, 9:63. BioMed Central Full Text
  • [44]Gogolewski S: Bioresorbable polymers in trauma and bone surgery. Injury 2000, 31:28-32.
  • [45]Xu L, Zhang E, Yin D, Zeng S, Yang K: In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. J Mater Sci Mater Med 2008, 19:1017-1025.
  • [46]Zhang E, Xu L, Yu G, Pan F, Yang K: In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res A 2009, 90:882-893.
  • [47]Xu L, Yu G, Zhang E, Pan F, Yang K: In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J Biomed Mater Res A 2007, 83:703-711.
  • [48]Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Windhagen H: In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 2006, 27:1013-1018.
  • [49]Hara T, Tanck E, Homminga J, Huiskes R: The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone 2002, 31:107-109.
  • [50]Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK: Automatic segmentation of cortical and rabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 2007, 41:505-515.
  • [51]Thomann M, Krause C, Angrisani N, Bormann D, Hassel T, Windhagen H, Meyer-Lindenberg A: Influence of a magnesium-fluoride coating of magnesium-based implants (MgCa0.8) on degradation in a rabbit model. J Biomed Mater Res A 2010, 93:1609-1619.
  • [52]An YH, Martin KL: Handbook of histology methods of bone and cartilage. Totowa: Humana Press; 2003.
  • [53]ISO 10993: Biological evaluation of medical devices. Switzerland: International Organisation for Geneva; 1993.
  • [54]Höh N: von der: Einfluss der Oberflächenbearbeitung von resorbierbaren Knochenimplantaten aus Magnesium-Calcium-Legierungen auf das Degradationsverhalten im Kaninchenmodell. Hannover: Stiftung Tierärztliche Hochschule; 2008.
  • [55]Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, Tao H, Zhang Y, He Y, Jiang Y, Bian Y: Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater 2010, 6:626-640.
  • [56]Reifenrath J, Krause A, Bormann D, von Rechenberg B, Windhagen H, Meyer-Lindenberg A: Profound differences in the in-vivo-degradation and biocompatibility of two very similar rare-earth containing Mg-alloys in a rabbit model. Mat -wiss u Werkstofftech 2010, 41:1054-1061.
  • [57]Castellani C, Lindtner RA, Hausbrandt P, Tschegg E, Stanzl-Tschegg SE, Zanoni G, Beck S, Weinberg A: Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. Acta Biomater 2011, 7:432-440.
  • [58]Heymann D, Guicheux J, Gouin F, Passuti N, Daculsi G: Cytokines, growth factors and osteoclasts. Cytokine 1998, 10:155-168.
  • [59]Hallab NJ, Jacobs JJ: Biologic effects of implant debris. Bull NYU Hosp Jt Dis 2009, 67:182-188.
  • [60]Rogers SD, Howie DW, Graves SE, Pearcy MJ, Haynes DR: In vitro human monocyte response to wear particles of titanium alloy containing vanadium or niobium. J Bone Joint Surg Br 1997, 79:311-315.
  • [61]Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C: Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 2006, 77:177-197.
  • [62]Zaidi M, Adebanjo OA, Moonga BS, Sun L, Huang CL: Emerging insights into the role of calcium ions in osteoclast regulation. J Bone Miner Res 1999, 14:669-674.
  • [63]Nichols KG, Puleo DA: Effect of metal ions on the formation and function of osteoclastic cells in vitro. J Biomed Mater Res 1997, 35:265-271.
  • [64]Malgaroli A, Meldolesi J, Zallone AZ, Teti A: Control of cytosolic free calcium in rat and chicken osteoclasts. The role of extracellular calcium and calcitonin. J Biol Chem 1989, 264:14342-14347.
  • [65]Miyauchi A, Hruska KA, Greenfield EM, Duncan R, Alvarez J, Barattolo R, Colucci S, Zambonin-Zallone A, Teitelbaum SL, Teti A: Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption. J Cell Biol 1990, 111:2543-2552.
  • [66]Boyle WJ, Simonet WS, Lacey DL: Osteoclast differentiation and activation. Nature 2003, 423:337-342.
  • [67]Greenfield EM, Bi Y, Miyauchi A: Regulation of osteoclast activity. Life Sci 1999, 65:1087-1102.
  • [68]Manolagas SC, Jilka RL: Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995, 332:305-311.
  • [69]Adebanjo OA, Moonga BS, Yamate T, Sun L, Minkin C, Abe E, Zaidi M: Mode of action of interleukin-6 on mature osteoclasts. Novel interactions with extracellular Ca2+ sensing in the regulation of osteoclastic bone resorption. J Cell Biol 1998, 142:1347-1356.
  • [70]Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD: Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 2000, 405:704-706.
  • [71]Burger EH, Klein-Nulend J: Mechanotransduction in bone--role of the lacuno-canalicular network. FASEB J 1999, 13:101-112.
  • [72]Smit TH, Burger EH: Is BMU-coupling a strain-regulated phenomenon? A finite element analysis. J Bone Miner Res 2000, 15:301-307.
  • [73]Hallab N: Metal sensitivity in patients with orthopedic implants. J Clin Rheumatol 2001, 7:215-218.
  文献评价指标  
  下载次数:38次 浏览次数:60次