会议论文详细信息
2018 2nd International Conference on Artificial Intelligence Applications and Technologies
Attention-based Hierarchical LSTM Model for Document Sentiment Classification
计算机科学
Wang, Bo^1 ; Fan, Binwen^1
Harbin Institute of Technology, Shenzhen, Shenzhen, China^1
关键词: Accuracy of classifications;    Attention mechanisms;    Document sentiment classification;    Hierarchical network structure;    Parameter selection;    Semantic information;   
Others  :  https://iopscience.iop.org/article/10.1088/1757-899X/435/1/012051/pdf
DOI  :  10.1088/1757-899X/435/1/012051
学科分类:计算机科学(综合)
来源: IOP
PDF
【 摘 要 】

Document sentiment classification is a fundamental task in data mining, contains extensive underlying commercial value. With the development of deep learning, we can extract features in an automatic way, instead of design it by oneself. Which can help us use semantic information to classify the document in a better way. Base that, in this paper, we present a hierarchical network structure according to the structure in real document. Based on LSTM to encode semantic information; then combine with attention mechanism to improve the accuracy of classification. And last, conduct experiment on two dataset, analyse the accuracy result of different model, and study some tricks in parameter selection.

【 预 览 】
附件列表
Files Size Format View
Attention-based Hierarchical LSTM Model for Document Sentiment Classification 395KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:38次