会议论文详细信息
2017 1st International Conference on Engineering and Applied Technology
Classification of heart signal using wavelet haar and backpropagation neural network
Hindarto, H.^1 ; Anshory, I.^1 ; Efiyanti, A.^1
Universitas Muhammadiyah Sidoarjo, Jl. Mojopahit 666B Sidoarjo Jl. Raya Gelam 250, Candi Sidoarjo, Indonesia^1
关键词: Back propagation neural networks;    Classification accuracy;    Classification process;    Feature extraction methods;    Haar features;    Haar wavelets;    Normal sinus rhythm;    Wavelet Haar;   
Others  :  https://iopscience.iop.org/article/10.1088/1757-899X/403/1/012069/pdf
DOI  :  10.1088/1757-899X/403/1/012069
来源: IOP
PDF
【 摘 要 】

Researchers used many methods to extract and classify heart signals. In this study wavelet haar is use to extract characteristics of heart signals. Artificial neural networks Backpropagation for the classification of heart signals. The data is taken from Physiobank namely MIT-BIH Arrhythmia Database and MIT-BIH Normal Sinus Rhythm Database. The data is processed using Haar wavelet method for its extraction. The results of feature extraction methods will be use for the classification process. The research found that by using Wavelet Haar feature extraction and classification using Backpropagation obtained classification accuracy rate of 92%.

【 预 览 】
附件列表
Files Size Format View
Classification of heart signal using wavelet haar and backpropagation neural network 168KB PDF download
  文献评价指标  
  下载次数:29次 浏览次数:35次