2017 International Conference on Aerospace Technology, Communications and Energy Systems | |
Synthesis of Nanomaterials by the Pulsed Plasma in Liquid and their Bio-medical Applications | |
航空航天工程;无线电电子学;能源学 | |
Omurzak, E.^1 ; Abdullaeva, Z.^2 ; Satyvaldiev, A.^3 ; Zhasnakunov, Z.^3 ; Kelgenbaeva, Z.^4 ; Adil Akai Tegin, R.^1 ; Syrgakbek Kyzy, D.^3 ; Doolotkeldieva, T.^5 ; Bobusheva, S.^5 ; Mashimo, T.^2 | |
Faculty of Engineering, Kyrgyz-Turkish Manas University, Chyngyz Aitmatov Campus, Jal, Bishkek | |
720038, Kyrgyzstan^1 | |
Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, Japan^2 | |
Faculty of Biology and Chemistry, Arabaev Kyrgyz State University, Bishkek, Kyrgyzstan^3 | |
Institute of Chemistry, Kyrgyz National Academy of Sciences, Bishkek, Kyrgyzstan^4 | |
Faculty of Veterinary, Kyrgyz-Turkish Manas University, Chyngyz Aitmatov Campus, Jal, Bishkek | |
720038, Kyrgyzstan^5 | |
关键词: Anti-bacterial activity; Biomedical applications; Cetyltrimethylammonium bromide; Electrical discharges; Magnetic nano-particles; Pulsed plasma in liquid; Sodium dodecyl sulphate; Thermal gravimetric analysis; | |
Others : https://iopscience.iop.org/article/10.1088/1757-899X/302/1/012076/pdf DOI : 10.1088/1757-899X/302/1/012076 |
|
学科分类:航空航天科学 | |
来源: IOP | |
【 摘 要 】
Pulsed plasma in liquid is a simple, ecologically friendly, cost-efficient method based on electrical discharge between two metal electrodes submerged into a dielectric liquid. We synthesized carbon-encapsulated Fe (Fe@C) magnetic nanoparticles with low cytotoxicity using pulsed plasma in a liquid. Body-centered cubic Fe core nanoparticles showed good crystalline structures with an average size between 20 and 30 nm were encapsulated in onion-like carbon coatings with a thickness of 2-10 nm. Thermal gravimetric analysis showed a high stability of the as-synthesized samples under thermal treatment and oxidation. Cytotoxicity measurements showed higher cancer cell viability than samples synthesized by different methods. Carbon coated ZnO nanorods with about 20 nm thickness and 150 nm length were synthesized by this method using different surfactant materials such as cetyl trimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS). Cu and Ag nanoparticles of about 10 nm in size were also synthesized by the pulsed plasma in aquatic solution of 0.2 % gelatine as surfactant material. These nanoparticles showed high antibacterial activity for Erwinia amylovora and Escherichia coli.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
Synthesis of Nanomaterials by the Pulsed Plasma in Liquid and their Bio-medical Applications | 473KB | download |