7th International Conference on Nanomaterials by Severe Plastic Deformation | |
Multiscale Crystal Plasticity Modeling Considering Nucleation of Dislocations Based on Thermal Activation Process on Ultrafine-grained Aluminum | |
Aoyagi, Y.^1 | |
Department of Finemechanics, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai | |
980-8579, Japan^1 | |
关键词: Accumulative roll bonding; Computational model; Critical resolved shear stress; Crystal plasticity models; Electron back scatter diffraction; Finite element simulations; Thermal activation process; Ultra-fine grained ( UFG); | |
Others : https://iopscience.iop.org/article/10.1088/1757-899X/194/1/012048/pdf DOI : 10.1088/1757-899X/194/1/012048 |
|
来源: IOP | |
【 摘 要 】
In this study, a crystal plasticity model expressing the behavior of the dislocation source and the mobile dislocations is proposed by considering a thermal activation process of dislocations. In order to predict the variation of critical resolved shear stress due to grain boundaries, mobile dislocations, or dislocation sources, information on these crystal defects is introduced into a hardening law of crystal plasticity. The crystal orientation and shape of ultrafine-grained (UFG) aluminum produced by accumulative roll bonding processes are measured by electron backscatter diffraction (EBSD). Mechanical properties of the UFG aluminum are estimated using tensile test and indentation test. Results obtained by EBSD are introduced into a computational model. Finite element simulation for polycrystal of aluminum investigates the effect of microstructure on mechanical properties of UFG aluminum.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
Multiscale Crystal Plasticity Modeling Considering Nucleation of Dislocations Based on Thermal Activation Process on Ultrafine-grained Aluminum | 647KB | download |