19th Chemnitz Seminar on Materials Engineering – 19. Werkstofftechnisches Kolloquium | |
Combustion synthesis of reactive nickel-aluminum particles as an innovative approach for thermal joining applications | |
Schreiber, S.^1 ; Theodossiadis, G.D.^1 ; Zaeh, M.F.^1 | |
Institute for Machine Tools and Industrial Management (Iwb), Technical University of Munich, Boltzmannstrasse 15, Garching | |
85748, Germany^1 | |
关键词: Core shell structure; Electroless plating process; External energy sources; Innovative approaches; Joining process; Planar geometries; Reaction behavior; Reactive particles; | |
Others : https://iopscience.iop.org/article/10.1088/1757-899X/181/1/012008/pdf DOI : 10.1088/1757-899X/181/1/012008 |
|
来源: IOP | |
【 摘 要 】
Reactive systems, which are widely used in combustion synthesis, represent a promising solution for challenging joining tasks. They are able to undergo a self-sustaining, highly exothermic reaction when exposed to an external energy source. Reactive foils are the only systems that are currently commercially available. However, their industrial use is limited due to the brittle nature of the material and the restriction to planar geometries. Reactive particles represent a more flexible format, but are currently not commercially available. Therefore, a two-step electroless plating process has been developed to synthesize nickel-aluminum core-shell structures. These structures function as microreactors, which provide the energy for the thermal joining process. Ignition tests with electromagnetic waves were performed in order to investigate the overall reactivity. Energy input and particle size significantly influence the activation and the reaction behavior of the core-shell structures. Furthermore, a general approach to use reactive particles as a heat source in joining applications is proposed.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
Combustion synthesis of reactive nickel-aluminum particles as an innovative approach for thermal joining applications | 860KB | download |