会议论文详细信息
International Engineering Research and Innovation Symposium
ProTEK PSB as Biotechnology Photosensitive Protection Mask on 3C-SiC-on-Si in MEMS Sensor
Marsi, N.^1,2 ; Majlis, B.Y.^3 ; Mohd-Yasin, F.^4 ; Hamzah, A.A.^3 ; Rus, A.Z. Mohd^2,5
Department of Mechanical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Johor, Batu Pahat
86400, Malaysia^1
Sustainable Polymer Engineering, Advanced Manufacturing and Materials Center (SPEN-AMMC), Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Johor, Batu Pahat
86400, Malaysia^2
Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia^3
Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Brisbane
QLD
41111, Australia^4
Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Johor, Batu Pahat
86400, Malaysia^5
关键词: Assembly approach;    Cubic silicon carbide (3C-SiC);    Cure temperature;    Development time;    Different treatments;    Flexible diaphragms;    Manufacturing cost;    Processing time;   
Others  :  https://iopscience.iop.org/article/10.1088/1757-899X/160/1/012093/pdf
DOI  :  10.1088/1757-899X/160/1/012093
来源: IOP
PDF
【 摘 要 】
This project presents the fabrication of MEMS employing a cubic silicon carbide (3C- SiC) on silicon wafer using newly developed ProTEK PSB as biotechnology photosensitive protection mask. This new biotechnology can reduce the number of processes and simplify the process flow with minimal impact on overall undercut performance. The 680 pm thick wafer is back-etched, leaving the 3C-SiC thin film with a thickness of 1.0 μm as the flexible diaphragm to detect pressure. The effect of the new coating of ProTEK PSB on different KOH solvents were investigated depending on various factors such as development time, final cure temperature and the thickness of the ProTEK PSB deposited layer. It is found that 6.174 μm thickness of ProTEK PSB offers some possibility of reducing the processing time compared to silicon nitride etch masks in KOH (55%wt, 80°C). The new ProTEK PSB biotechnology photosensitive protection mask indicates good stability and sustains its performance in different treatments under KOH and IPA for 8 hours. This work also revealed that the fabrication of MEMS sensors using the new biotechnology photosensitive protection mask provides a simple assembly approach and reduces manufacturing costs. The MEMS sensor can operate up to 500°C as indicated under the sensitivity of 0.826 pF/MPa with nonlinearity and hysteresis of 0.61% and 3.13%, respectively.
【 预 览 】
附件列表
Files Size Format View
ProTEK PSB as Biotechnology Photosensitive Protection Mask on 3C-SiC-on-Si in MEMS Sensor 1217KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:43次