| International Conference on Mechanical Engineering, Automation and Control Systems 2015 | |
| Modification of the sample's surface of hypereutectic silumin by pulsed electron beam | |
| 机械制造;无线电电子学;计算机科学 | |
| Rygina, M.E.^2 ; Ivanov, Yu.F.^1,2 ; Lasconev, A.P.^3 ; Teresov, A.D.^1,2 ; Cherenda, N.N.^4 ; Uglov, V.V.^4 ; Petricova, E.A.^1,2 ; Astashinskay, M.V.^4 | |
| Tomsk Polytechnic University, 30, Lenina ave., Tomsk | |
| 634050, Russia^1 | |
| Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences, 2/4, Akademicheskiy ave., Tomsk | |
| 634055, Russia^2 | |
| Physical-Technical Institute, Belarus National Academy of Science Minsk, 66, Independence ave., Minsk | |
| 220072, Belarus^3 | |
| Belarusian State University, 4, Nezavisimosti ave., Minsk | |
| 220030, Belarus^4 | |
| 关键词: Aluminium silicon alloy; High-intensity electron beam; Hyper-eutectic compositions; Nano-crystalline structures; Pulsed electron beams; Russian Academy of Sciences; Tribological characteristics; Tribological properties; | |
| Others : https://iopscience.iop.org/article/10.1088/1757-899X/124/1/012138/pdf DOI : 10.1088/1757-899X/124/1/012138 |
|
| 学科分类:计算机科学(综合) | |
| 来源: IOP | |
PDF
|
|
【 摘 要 】
The article presents the results of the analysis of the elemental and phase composition, defect substructures. It demonstrates strength and tribological characteristics of the aluminium-silicon alloy of the hypereutectic composition in the cast state and after irradiation with a high-intensity pulsed electron beam of a submillisecond exposure duration (a Solo installation, Institute of High Current Electrons of the Siberian Branch of the Russian Academy of Sciences). The research has been conducted using optical and scanning electron microscopy, and the X-ray phase analysis. Mechanical properties have been characterized by microhardness, tribological properties - by wear resistance and the friction coefficient value. Irradiation of silumin with the high-intensity pulsed electron beam has led to the modification of the surface layer up to 1000 microns thick. The surface layer with the thickness of up to 100 microns is characterized by melting of all phases present in the alloy; subsequent highspeed crystallization leads to the formation of a submicro- and nanocrystalline structure in this layer. The hardness of the modified layer decreases with the increasing distance from the surface exposure. The hardness of the surface layer is more than twice the hardness of cast silumin. Durability of silumin treated with a high intensity electron beam is ≈ 1, 2 times as much as the wear resistance of the cast material.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| Modification of the sample's surface of hypereutectic silumin by pulsed electron beam | 1305KB |
PDF