| 2nd International Conference on Innovative Materials, Structures and Technologies | |
| Performance of Lightweight Concrete based on Granulated Foamglass | |
| Popov, M.^1 ; Zakrevskaya, L.^1 ; Vaganov, V.^2 ; Hempel, S.^3 ; Mechtcherine, V.^3 | |
| Vladimir State University, Department of Construction Production, Vladimir, Russia^1 | |
| Vladimir State University, Department of Physics and Applied Mathematics, Vladimir, Russia^2 | |
| Institute of Construction Materials, TU Dresden, Dresden, Germany^3 | |
| 关键词: Alkali-silica reaction; Environmental performance; Methods of analysis; Microstructural analysis; Microstructural changes; Pozzolanic additives; Preventive measures; Recycling industry; | |
| Others : https://iopscience.iop.org/article/10.1088/1757-899X/96/1/012017/pdf DOI : 10.1088/1757-899X/96/1/012017 |
|
| 来源: IOP | |
PDF
|
|
【 摘 要 】
The paper presents an investigation of lightweight concretes properties, based on granulated foamglass (GFG-LWC) aggregates. The application of granulated foamglass (GFG) in concrete might significantly reduce the volume of waste glass and enhance the recycling industry in order to improve environmental performance. The conducted experiments showed high strength and thermal properties for GFG-LWC. However, the use of GFG in concrete is associated with the risk of harmful alkali-silica reactions (ASR). Thus, one of the main aims was to study ASR manifestation in GFG-LWC. It was found that the lightweight concrete based on porous aggregates, and ordinary concrete, have different a mechanism of ASR. In GFG-LWC, microstructural changes, partial destruction of granules, and accumulation of silica hydro-gel in pores were observed. According to the existing methods of analysis of ASR manifestation in concrete, sample expansion was measured, however, this method was found to be not appropriate to indicate ASR in concrete with porous aggregates. Microstructural analysis and testing of the concrete strength are needed to evaluate the damage degree due to ASR. Low-alkali cement and various pozzolanic additives as preventive measures against ASR were chosen. The final composition of the GFG-LWC provides very good characteristics with respect to compressive strength, thermal conductivity and durability. On the whole, the potential for GFG-LWC has been identified.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| Performance of Lightweight Concrete based on Granulated Foamglass | 1056KB |
PDF