会议论文详细信息
7th Young Researcher Meeting
Theory of photon-driven correlated electrons in one dimension
Puviani, M.^1 ; Manghi, F.^1,2
Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Universita degli Studi di Modena e Reggio Emilia, Via Campi 213/A, Modena
I-41125, Italy^1
CNR-Institute of NanoSciences S3, Via Campi 213/A, Modena
I-41125, Italy^2
关键词: Absorption and emissions;    Cluster perturbation theories;    Insulator-to-metal transitions;    Interacting electrons;    Many-body calculations;    Out-of-equilibrium systems;    Periodic perturbation;    Theoretical framework;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/841/1/012021/pdf
DOI  :  10.1088/1742-6596/841/1/012021
来源: IOP
PDF
【 摘 要 】

In this paper we present a general theoretical framework to study interacting electrons under the influence of an external time-periodic driving, such as a homogeneous laser field. This is performed through a true many-body calculation and the use of Floquet theory. In particular, we consider a linear atomic chain using the Hubbard model to describe the short-ranged Coulomb interactions between electrons, plus Cluster Perturbation Theory to embed the many-body exact solution for a finite system into both an extended and an infinite lattice. Due to the presence of the external time-periodic perturbation, the electronic problem can be mapped into the study of photon-dressed quasiparticles thanks to Floquet theorem, keeping into account of all the virtual processes (absorption and emission of photons by electrons) with the laser field. This leads to an extension of the many-body static theories to out-of-equilibrium systems. This theoretical approach allowed us to show how the electronic properties of the system can be controlled and tuned varying the laser parameters. Above all, an inverse insulator-to-metal transition can be obtained for the one dimensional infinite lattice, and edge localized states appear as a finite size effect in an extended truncated chain.

【 预 览 】
附件列表
Files Size Format View
Theory of photon-driven correlated electrons in one dimension 277KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:32次