The Science of Making Torque from Wind | |
Simulation and Optimization of an Airfoil with Leading Edge Slat | |
Schramm, Matthias^1,2 ; Stoevesandt, Bernhard^1 ; Peinke, Joachim^1,2 | |
Fraunhofer IWES, Kiipkersweg 70, Oldenburg | |
26129, Germany^1 | |
ForWind, Insitute of Physics, Oldenburg University, Ammerländer Heerstr. 114-118, Oldenburg | |
26129, Germany^2 | |
关键词: Adjoint approach; Adjoint methods; Computational costs; Design parameters; Gradient-based optimization; Leading edge slats; Reynolds Averaged Navier-Stokes Equations; Simulation and optimization; | |
Others : https://iopscience.iop.org/article/10.1088/1742-6596/753/2/022052/pdf DOI : 10.1088/1742-6596/753/2/022052 |
|
来源: IOP | |
【 摘 要 】
A gradient-based optimization is used in order to improve the shape of a leading edge slat upstream of a DU 91-W2-250 airfoil. The simulations are performed by solving the Reynolds-Averaged Navier-Stokes equations (RANS) using the open source CFD code OpenFOAM. Gradients are computed via the adjoint approach, which is suitable to deal with many design parameters, but keeping the computational costs low. The implementation is verified by comparing the gradients from the adjoint method with gradients obtained by finite differences for a NACA 0012 airfoil. The simulations of the leading edge slat are validated against measurements from the acoustic wind tunnel of Oldenburg University at a Reynolds number of Re = 6 • 105. The shape of the slat is optimized using the adjoint approach resulting in a drag reduction of 2%. Although the optimization is done for Re = 6 • 105, the improvements also hold for a higher Reynolds number of Re = 7.9 • 106, which is more realistic at modern wind turbines.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
Simulation and Optimization of an Airfoil with Leading Edge Slat | 1237KB | download |