10th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes | |
Constitutive modeling of a commercially pure titanium: validation using bulge tests | |
Revil-Baudard, Benoit^1 ; Massoni, Elisabeth^2 | |
Department of Mechanical and Aerospace Engineering, University of Florida, REEF, 1350 N. Poquito Rd., Shalimar | |
FL | |
32579, United States^1 | |
MINES ParisTech, Center for Material Forming (CEMEF), UMR CNRS 7635, BP 207, Sophia-Antipolis Cedex | |
06904, France^2 | |
关键词: Commercially Pure titaniums; Material parameter; Mechanical behavior; Numerical predictions; Plastic strain localization; Predictive capabilities; Strain distributions; Tension-compression asymmetry; | |
Others : https://iopscience.iop.org/article/10.1088/1742-6596/734/3/032057/pdf DOI : 10.1088/1742-6596/734/3/032057 |
|
来源: IOP | |
【 摘 要 】
In this paper, mechanical tests aimed at characterizing the plastic anisotropy of a commercially pure α-titanium sheet are presented. Hemispheric and elliptic bulge tests conducted to investigate the forming properties of the material are also reported. To model the particularities of the plastic response of the material the classical Hill [1] yield criterion, and Cazacu et al. [2] yield criterion are used. Identification of the material parameters involved in both criteria is based only on uniaxial test data, while their predictive capabilities are assessed through comparison with the bulge tests data. Both models reproduce qualitatively the experimental plastic strain distribution and the final thickness of the sheet. However, only Cazacu et al. [2] yield criterion, which accounts for both the anisotropy and tension-compression asymmetry of the material captures correctly plastic strain localization, in particular its directionality. Furthermore, it is shown that accounting for the strong tension-compression asymmetry in the model formulation improves numerical predictions regarding the mechanical behavior close to fracture of a commercially pure titanium alloy under sheet metal forming processes.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
Constitutive modeling of a commercially pure titanium: validation using bulge tests | 1656KB | download |