9th International Conference on Inertial Fusion Sciences and Applications | |
An accelerator facility for WDM, HEDP, and HIF investigations in Nazarbayev University | |
Kaikanov, M.^1 ; Baigarin, K.^1 ; Tikhonov, A.^1 ; Urazbayev, A.^1 ; Kwan, J.W.^1 ; Henestroza, E.^1 ; Remnev, G.^2 ; Shubin, B.^2 ; Stepanov, A.^2 ; Shamanin, V.^2 ; Waldron, W.L.^3 | |
National Laboratory Astana, Astana, Kazakhstan^1 | |
Tomsk Polytechnic University, Tomsk, Russia^2 | |
Lawrence Berkeley National Laboratory, Berkeley, United States^3 | |
关键词: Accelerator facilities; Beam neutralization; Extreme conditions; High current proton beams; Inductive voltage adders; Inertial fusion energy; Pulsed ion beams; Studies of materials; | |
Others : https://iopscience.iop.org/article/10.1088/1742-6596/717/1/012099/pdf DOI : 10.1088/1742-6596/717/1/012099 |
|
来源: IOP | |
【 摘 要 】
Nazarbayev University (NU) in Astana, Kazakhstan, is planning to build a new multi-MV, ∼10 to several hundred GW/cm2ion accelerator facility which will be used in studies of material properties at extreme conditions relevant to ion-beam-driven inertial fusion energy, and other applications. Two design options have been considered. The first option is a 1.2 MV induction linac similar to the NDCX-II at LBNL, but with modifications, capable of heating a 1 mm spot size thin targets to a few eV temperature. The second option is a 2 - 3 MV, ∼200 kA, single-gap-diode proton accelerator powered by an inductive voltage adder. The high current proton beam can be focused to ∼1 cm spot size to obtain power densities of several hundred GW/cm2, capable of heating thick targets to temperatures of tens of eV. In both cases, a common requirement to achieving high beam intensity on target and pulse length compression is to utilize beam neutralization at the final stage of beam focusing. Initial experiments on pulsed ion beam neutralization have been carried out on a 0.3 MV, 1.5 GW single-gap ion accelerator at Tomsk Polytechnic University with the goal of creating a plasma region in front of a target at densities exceeding ∼1012cm-3.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
An accelerator facility for WDM, HEDP, and HIF investigations in Nazarbayev University | 901KB | download |